优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解答题
初中数学

(本题10分)如图13-1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为米.
(1)用含的式子表示花圃的面积;
(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽;
(3)若按上述要求施工,同时校长希望长方形花圃的形状与原长方形空地的形状相似,聪明的你想一想能不能满足校长的要求,若能,求出此时通道的宽;若不能,则说明理由。

  • 题型:未知
  • 难度:未知

当a=3,b=﹣1时
(1)求代数式a2﹣b2和(a+b)(a﹣b)的值;
(2)猜想这两个代数式的值有何关系?
(3)根据(1)(2),你能用简便方法算出a=2008,b=2007时,a2﹣b2的值吗?

  • 题型:未知
  • 难度:未知

有下列各有理数:﹣22,﹣|﹣2.5|,,0,(﹣1)100,﹣|3|.
(1)将上述各数填入适当的括号内.
正整数:{                };负有理数:{                      }
(2)将上面各数在数轴上表示出来,并按从小到大的顺序用“<”号连接起来.

  • 题型:未知
  • 难度:未知

(本题10分)如图,数轴上的三点A、B、C分别表示有理数a、b、c.(O为原点)

(1)a-b      0,a+c      0,b-c      0.
(用“<”或“>”或“=”号填空)
化简:|a-b|-|a+c|+|b-c|
(2)若数轴上两点A、B对应的数分别为-3、-1,点P为数轴上一动点,其对应的数为x.
①若点P到点A、点B的距离相等,则点P对应的数x为         
②若点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P以6个单位长
度/秒的速度同时从原点O向左运动.当点A与点B之间的距离为1个单位长度时,求点P所对应的数
x是多少?

  • 题型:未知
  • 难度:未知

(本题8分)已知:,当x取何值时
(1)y1与y2互为相反数?
(2)y1比y2小2?

  • 题型:未知
  • 难度:未知

解方程(每题4分,共8分)
(1)    (2)-

  • 题型:未知
  • 难度:未知

在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚工到达B地,约定向东为正方向,当天航行路程记录如下:14,-9,-18,-7,13,-6,10,-5(单位:千米).
(1)B地在A地何位置?
(2)若冲锋舟每千米耗油0.5升,出发前冲锋舟油箱有油29升,求途中需补充多少升油?

  • 题型:未知
  • 难度:未知

(本题10分)某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x为非负整数),每星期的销量为y件.
(1)求y与x的函数关系式及自变量x的取值范围;
(2)如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少?

  • 题型:未知
  • 难度:未知

(本题8分)如图1,在一个不透明的袋子中装有四个球,分别标有字母A、B、C、D,这些球除了字母外完全相同,此外,有一面白色、另一面黑色、大小相同的四张正方形卡片,每张卡片两面的字母相同,分别标有字母A、B、C、D.最初,摆成如图2的样子,A.D是黑色,B.C是白色.

两次操作后观察卡片的颜色.
(如:第一次取出A、第二次取出B,此时卡片的颜色变成
(1)求取四张卡片变成相同颜色的概率;
(2)求四张卡片变成两黑两白、并恰好形成各自颜色的矩形的概率.

  • 题型:未知
  • 难度:未知

(本题8分)如图,AB是⊙O的直径,C.D两点在⊙O上,若∠C=45°.

(1)求∠ABD的度数;
(2)若∠CDB=30°,BC=3,求⊙O的半径.

  • 题型:未知
  • 难度:未知

(本小题满分6分)先化简,再求值:,其中是不等式组的整数解.

  • 题型:未知
  • 难度:未知

已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=

(1)写出点B的坐标;
(2)在x轴上找一点D,连接BD,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;
(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m使得△APQ与△ADB相似?如存在,请求出的m值;如不存在,请说明理由.

  • 题型:未知
  • 难度:未知

(本小题8分)已知抛物线
(1)求证:此抛物线与x轴必有两个不同的交点;
(2)若此抛物线与直线的一个交点在y轴上,求m的值.

  • 题型:未知
  • 难度:未知

关于x的一元二次方程(a-6)x2-8x+9=0有实根.
(1)求a的最大整数值;
(2)当a取最大整数值时,
①求出该方程的根;
②求的值.

  • 题型:未知
  • 难度:未知

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD丄PA,垂足为D.

(1)CD为⊙O的切线吗,说明理由;
(2)若DC+DA=6,⊙O的直径为10,求AB的长度.

  • 题型:未知
  • 难度:未知

初中数学解答题