优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解答题
初中数学

有一个,将它放在直角坐标系中,使斜边轴上,直角顶点在反比例函数的图象上,求点的坐标.

来源:2005年初中毕业升学考试(江苏常州卷)数学
  • 题型:未知
  • 难度:未知

如图,将一块直角三角形纸板的直角顶点放在处,两直角边分别与轴平行,纸板的另两个顶点恰好是直线与双曲线的交点.

(1)求的值;
(2)设双曲线之间的部分为,让一把三角尺的直角顶点
滑动,两直角边始终与坐标轴平行,且与线段交于两点,请探究是否存在点使得,写出你的探究过程和结论.

来源:2005年初中毕业升学考试(江苏连云港卷)数学
  • 题型:未知
  • 难度:未知

已知等腰三角形ABC的两个顶点分别是A(0,1)、B(0,3),第三个顶点C在x轴的正半轴上.关于y轴对称的抛物线y=ax2+bx+c经过A、D(3,-2)、P三点,且点P关于直线AC的对称点在x轴上.

(1)求直线BC的解析式;
(2)求抛物线y=ax2+bx+c的解析式及点P的坐标;
(3)设M是y轴上的一个动点,求PM+CM的取值范围.

来源:2007年初中毕业升学考试(江苏南通卷)数学
  • 题型:未知
  • 难度:未知

如图,已知平面直角坐标系中,点为两动点,其中,连结
(1)求证:
(2)当时,抛物线经过两点且以轴为对称轴,求抛物线对应的二次函数的关系式;
(3)在(2)的条件下,设直线轴于点,过点作直线交抛物线于两点,问是否存在直线,使?若存在,求出直线对应的函数关系式;若不存在,请说明理由.

来源:2007年初中毕业升学考试(山东潍坊卷)数学
  • 题型:未知
  • 难度:未知

如图所示,抛物线与轴交于点两点,与轴交于点为直径作过抛物线上一点的切线切点为并与的切线相交于点连结并延长交于点连结

(1)求抛物线所对应的函数关系式及抛物线的顶点坐标;
(2)若四边形的面积为求直线的函数关系式;
(3)抛物线上是否存在点,使得四边形的面积等于的面积?若存在,求出点的坐标;若不存在,说明理由.

来源:2010年初中毕业升学考试(山东潍坊卷)数学
  • 题型:未知
  • 难度:未知

如图,已知正方形在直角坐标系中,点分别在轴、轴的正半轴上,点在坐标原点.等腰直角三角板的直角顶点在原点,分别在上,且将三角板点逆时针旋转至的位置,连结

(1)求证:
(2)若三角板点逆时针旋转一周,是否存在某一位置,使得若存在,请求出此时点的坐标;若不存在,请说明理由.

来源:2010年初中毕业升学考试(山东潍坊卷)数学
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于四点.抛物线轴交于点,与直线交于点,且分别与圆相切于点和点
(1)求抛物线的解析式;
(2)抛物线的对称轴交轴于点,连结,并延长交圆,求的长.
(3)过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由.

来源:2009年初中毕业升学考试(山东潍坊卷)数学
  • 题型:未知
  • 难度:未知

如图所示,圆的外接圆,的平分线相交于点,延长交圆于点,连结

(1)求证:
(2)若圆的半径为10cm,,求的面积.

来源:2009年初中毕业升学考试(山东潍坊卷)数学
  • 题型:未知
  • 难度:未知

已知圆P的圆心在反比例函数图象上,并与x轴相交于AB两点. 且始终与y轴相切于定点C(0,1).

(1)求经过ABC三点的二次函数图象的解析式;
(2)若二次函数图象的顶点为D,问当k为何值时,四边形ADBP为菱形.

来源:2007年初中毕业升学考试(安徽芜湖卷)数学
  • 题型:未知
  • 难度:未知

已知多边形ABDEC是由边长为2的等边三角形ABC和正方形BDEC组成,一圆过ADE三点,求该圆半径的长.

来源:2007年初中毕业升学考试(安徽芜湖卷)数学
  • 题型:未知
  • 难度:未知

抛物线轴于两点,交轴于点,已知抛物线的对称轴为,
(1)求二次函数的解析式;
在抛物线对称轴上是否存在一点,使点两点距离之差最大?若存在,求出点坐标;若不存在,请说明理由;
平行于轴的一条直线交抛物线于两点,若以为直径的圆恰好与轴相切,求此圆的半径.

来源:2005年初中毕业升学考试(山东潍坊卷)数学
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,的长是关于的一元二次方程的两个根,且
(1)求的值.
(2)若轴上的点,且求经过两点的直线的解析式,并判断是否相似?
(3)若点在平面直角坐标系内,则在直线上是否存在点使以为顶点的四边形为菱形?若存在,请直接写出点的坐标;若不存在,请说明理由.

来源:2009年初中毕业升学考试(黑龙江牡丹江卷)数学
  • 题型:未知
  • 难度:未知

已知:如图,△ABC中,∠C=90°,AC=3厘米,CB=4厘米.两个动点P、Q分别从A、C两点同时按顺时针方向沿△ABC的边运动.当点Q运动到点A时,P、Q两点运动即停止.点P、Q的运动速度分别为1厘米/秒、2厘米/秒,设点P运动时间为(秒).

(1)当时间为何值时,以P、C、Q三点为顶点的三角形的面积(图中的阴影部分)等于2厘米2
(2)当点P、Q运动时,阴影部分的形状随之变化.设PQ与△ABC围成阴影部分面积为S(厘米2),求出S与时间的函数关系式,并指出自变量的取值范围;
(3)点P、Q在运动的过程中,阴影部分面积S有最大值吗?若有,请求出最大值;若没有,请说明理由.

来源:2005年初中毕业升学考试(江苏宿迁卷)数学
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E
①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?
②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.

来源:2009年初中毕业升学考试(河南卷)数学
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点在坐标轴上,.动点从点出发,以的速度沿轴匀速向点运动,到达点即停止.设点运动的时间为

(1)过点作对角线的垂线,垂足为点.求的长与时间的函数关系式,并写出自变量的取值范围;
(2)在点运动过程中,当点关于直线的对称点恰好落在对角线上时,求此时直线的函数解析式;
(3)探索:以三点为顶点的的面积能否达到矩形面积的?请说明理由.

来源:2007年初中毕业升学考试(江苏连云港卷)数学
  • 题型:未知
  • 难度:未知

初中数学解答题