优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解答题
初中数学

如图①,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在轴的正半轴上,点C在轴的正半轴上,OA=5,OC=4.
(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标;
(2)如图②,若AE上有一动点P(不与A、E重合)自A点沿AE方向向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为秒,过P点作ED的平行线交AD于点M,过点M作AE的平行线交DE于点N.求四边形PMNE的面积S与时间之间的函数关系式;当取何值时,S有最大值?最大值是多少?
(3)在(2)的条件下,当为何值时,以A、M、E为顶点的三角形为等腰三角形,并求出相应时刻点M的坐标.

来源:2012届浙江温州泰顺九校初中毕业生学业水平考试模拟检测数学试题
  • 题型:未知
  • 难度:未知

如图, 已知直线分别与轴, 轴交于两点, 点轴上. 以点为圆心的⊙与直线相切于点, 连接.

(1) 求证: ;
(2)如果⊙的半径为, 求出点的坐标, 并写出以为顶点, 且过点的抛物线的解析式;
(3) 在(2)的条件下, 在此抛物线上是否存在点, 使得以三点为顶点的三角形与相似? 如果存在, 请求出所有符合条件的点的坐标; 如果不存在, 请说明理由.

  • 题型:未知
  • 难度:未知

在平面直角坐标系xOy中,抛物线y= -x2+x+m2-3m+2 与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上。

(1) 求点B的坐标;
(2) 点P在线段OA上,从O点出发向A点运动,过P点作x轴的垂线,与直线OB交于点E。延长PE到点D。使得ED=PE。 以PD为斜边在PD右侧作等腰直角三角形PCD(当P点运动时,C点、D点也随之运动)
j当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;
k若P点从O点出发向A点作匀速运动,速度为每秒1个单位,同时线段OA上另一点QA点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动)。过Q点作x轴的垂线,与直线AB交于点F。延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q点运动时,M点,N点也随之运动)。若P点运动到t秒时,两个等腰直角三角形分别有一条直角边恰好落在同一条直线上,求此刻t的值。

  • 题型:未知
  • 难度:未知

如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线经过坐标原点O和x轴上另一点E(4,0)

图1图2
(1)当x取何值时,该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
① 当时,判断点P是否在直线ME上,并说明理由;
② 以P、N、C、D为顶点的多边形面积是否可能为5,若有可能,求出此时N点的坐标;若无可能,请说明理由.

来源:2012届河南商丘数学考前统一模拟数学试题
  • 题型:未知
  • 难度:未知

已知,矩形中,,,的垂直平分线分别交于点,垂足为.
(1)如图1,连接.求证四边形为菱形,并求的长;
(2)如图2,动点分别从两点同时出发,沿各边匀速运动一周.即点停止,点停止.在运动过程中,已知点的速度为每秒5,点的速度为每秒4,运动时间为秒,当四点为顶点的四边形是平行四边形时,求的值.

来源:2012届河南商丘数学考前统一模拟数学试题
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线y=ax2+bx+2的图象过,与轴交于点,与轴交于另一点,点是原点关于点的对称点,连结,设点

(1)求抛物线的解析式;
(2)连结,①求的值;②将绕点旋转,在旋转过程中如图(2),线段的比值会变吗?请说明理由;
(3)设点是直线上方的抛物线上一点,连结,以为边作图示一侧的正方形,随着点的运动,正方形的大小,位置也随之改变,当顶点恰好落在轴上时,直接写出对应点的坐标。

  • 题型:未知
  • 难度:未知

已知抛物线y=ax2+bx+c ,当x=0时,有最小值为1 ;且在直线y=2上截得的线段长为4 .

(1)求此抛物线的解析式;
(2)若点P是抛物线的任意一点,记点P到X轴的距离为d1,点P 与点 F (0,2)的距离为d 2,猜想d1、 d 2的大小关系,并证明;
(3)若直线PF交此抛物线于另一点Q(异于P点)。 试判断以PQ为直径的圆与x 轴的位置关系,并说明理由。

  • 题型:未知
  • 难度:未知

已知:如图,O正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F ,使CF=CE,连结DF,交BE的延长线于点G,连结OG.
⑴ 求证:△BCE≌△DCF;
⑵ OG与BF有什么数量关系?证明你的结论;
⑶ 若GE·GB=4-2,求 正方形ABCD的面积.

  • 题型:未知
  • 难度:未知

已知二次函数
(1) 证明:当m为整数时,抛物线与x轴交点的横坐标均为整数;
(2) 以抛物线的顶点A为等腰Rt△的直角顶点,作该抛物线的内接等腰Rt△ABC(B、C两点在抛物线上),求Rt△ABC的面积(图中给出的是m取某一值时的示意图);
(3) 若抛物线与直线y=7交点的横坐标均为整数,求整数m的值.

来源:2012届浙江省杭州市拱墅区中考模拟(二)数学试题
  • 题型:未知
  • 难度:未知

已知抛物线交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y轴的直线l. 在位于直线l下方的抛物线上任取一点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.
(1)写出A,B,C三点的坐标;
(2)若点P位于抛物线的对称轴的右侧:
①如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;
②若将△APQ沿AP对折,点Q的对应点为点M.是否存在点P,使得点M落在x轴上.若存在,求出点P的坐标;若不存在,请说明理由.

来源:2012届浙江省杭州市上城区中考二模数学试题
  • 题型:未知
  • 难度:未知

如图,已知抛物线y=ax+bx+c经过A(-3,0)、B(1,0)、C(0,3)三点,求:(1)抛物线解析式
(2)若抛物线的顶点为P,求∠PAC的正切值
(3)若以点A、C、P、M为顶点的四边形是平行四边形,求点M的坐标

  • 题型:未知
  • 难度:未知

如图①在梯形ABCD中,AD∥BC。AB=DC
(1)如果点P,E和F分别是BC,AC和BD的中点,证明:AB=PE+PF
(2)如果点P是线段BC上任意一点(中点除外),PE∥AB,PF∥DC,如图②所示,那么AB=PE+PF这个结论还成立吗?请说明理由
(3)如果点P在线段BC的延长线上, PE∥AB,PF∥DC,其他条件不变,那么结论AB=PE+PF是否成立?直接写出结论,不必证明。

  • 题型:未知
  • 难度:未知

为了发展旅游经济,我市某风景区对门票采用灵活的售票方法吸引游客,门票的定价为每人50元,,非节日打a折售票,节假日按团队人数分段定价售票,即m人一下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人的部分的游客打b折售票,设某旅游团人数为x人,非节假日购票款为y(元),节假日购票款为y(元)。y、y与x之间的函数图像如图所示

(1)观察图像可知a=,b=,m=
(2)直接写出y, y与x之间的函数解析式
(3)某旅行社导游王娜于5月1日带A团,5月20日(非节假日)带B团到该景区旅游,共付门票款1900元,A、B两个团队合计50人,求A、B两个团队各有多少人?

  • 题型:未知
  • 难度:未知

某农场去年种植了10亩地的南瓜,亩产量为2000千克,根据时常需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜的种植面积的增长率是亩产量的增长率的2倍,今年南瓜的总产量为60000千克,求南瓜亩产量的增长率。

  • 题型:未知
  • 难度:未知

如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD
(1)求证:∠CDE=2∠B
(2)若BD:AB=:2,求⊙O的半径及弦DF的长

  • 题型:未知
  • 难度:未知

初中数学解答题