优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解答题
初中数学

九年级六班的一个综合实践活动小组去A,B两超市调查去年和今年“十一”期间的销售情况,如图是调查后小敏与其他两位同学进行交流的情景.根据他们的对话,请你分别求出A,B两个超市今年“十一”期间的销售额.

  • 题型:未知
  • 难度:未知

一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:
(1)甲、乙两组工作一天,商店各应付多少钱?
(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?
(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策。(可用(1)(2)问的条件及结论)

  • 题型:未知
  • 难度:未知

宏达汽车销售有限公司到某汽车制造公司选购A、B两种型号的轿车,用300万元可购进A型轿车10辆,B型轿车15辆;用300万元可购进A型轿车8辆,B型轿车18辆.
(1)求A、B两种型号的轿车每辆分别多少元?
(2)若该汽车销售公司销售一辆A型轿车可获利8000元,销售一辆B型轿车可获利5000元。该汽车销售公司准备用不超过400万元购买A、B两种型号的轿车共30辆,且这两种轿车全部售出后总获利不低于20.4万元。问:有几种购车方案?在这几种购车方案中,哪种获利最多?

来源:2011—2012学年河南邓州腰店乡二初中下册七年级数学期中数学试卷
  • 题型:未知
  • 难度:未知

如图9, 已知抛物线轴交于A (-4,0) 和B(1,0)两点,与轴交于C点.

(1)求此抛物线的解析式;
(2)设E是线段AB上的动点,作EF//ACBCF,连接CE,当△CEF的面积是△BEF面积的2倍时,求E点的坐标;
(3)若P为抛物线上AC两点间的一个动点,过P轴的平行线,交ACQ,当P点运动到什么位置时,线段PQ的值最大,并求此时P点的坐标.

  • 题型:未知
  • 难度:未知

在平面坐标系xoy中,直线xy轴交于点AB,作△AOB为外接⊙E.将直角三角板的30°角的顶点C摆放在圆弧上,三角板的两边始终过点OA,并且不断地转动三角板.
(1)如图1,当点CB重合时,连接OE求扇形EOA的面积;
(2)当时,求经过AOC三点的抛物线的解析式,直接写出顶点坐标;
(3)如图2,在转动中,过C作⊙E的切线,交y轴于D,当ACDB四点围成的四边形是梯形时,求点D的坐标.

来源:2012届浙江省金四校九年级联考数学卷
  • 题型:未知
  • 难度:未知

已知如图,对称轴为直线的抛物线轴相交于点B、O.

(1)求抛物线的解析式,并求出顶点A的坐标.
(2) 连结AB,平移AB所在的直线,使其经过原点O,得到直线.点上一动点,当△的周长最小时,求点P的坐标.
(3)当△的周长最小时,在直线AB的上方是否存在一点Q,使以A,B,Q为顶点的三角形与△POB相似,若存在,直接写出点Q的坐标;若不存在,说明理由.(规定:点Q的对应顶点不为点O

来源:2012届浙江省金衢十一校九年级适应性练习数学卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线与抛物线交于A,B两点,点A在轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A,B重合),过点P作轴的垂线交直线AB与点C,作PD⊥AB于点D
(1)求的值
(2)设点P的横坐标为
①用含的代数式表示线段PD的长,并求出线段PD长的最大值;
②连接PB,线段PC把分成两个三角形,是否存在适合的值,使这两个三角形的面积之比为9:10?若存在,直接写出值;若不存在,说明理由.

来源:2012年初中毕业升学考试(河南洛阳卷)数学
  • 题型:未知
  • 难度:未知

如图1,点A为抛物线C1的顶点,点B的坐标为(1,0),直线AB交抛物线C1于另一点C.
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a
交直线AB于F,交抛物线C1于G,若FG:DE=4∶3,求a的值;
(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴
于点M,交射线BC于点N,NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.

图1图2

来源:2012年初中毕业升学考试(湖北武汉卷)数学
  • 题型:未知
  • 难度:未知

如图1,在等腰梯形ABCO中,ABCOEAO的中点,过点EEFOCBCFAO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OCx轴正半轴上,点AB在第一象限内.
(1)求点E的坐标及线段AB的长;
(2)点P为线段EF上的一个动点,过点PPMEFOC于点M,过MMNAO交折线ABC于点N,连结PN,设PE=x.△PMN的面积为S.
①求S关于x的函数关系式;
②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;

(3)另有一直角梯形EDGHHEF上,DG落在OC上,∠EDG=90°,且DG=3,HGBC.现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为EDGH′(如图3);试探究:在运动过程中,等腰梯ABCO与直角梯形EDGH′重合部分的面积y与时间t的函数关系式.

  • 题型:未知
  • 难度:未知

已知抛物线y=﹣x2+bx+c的对称轴为直线x=1,此抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.△ABC的面积等于1.5.
(1)请求出抛物线的解析式,并求出点A的坐标.
(2)在抛物线上是否存在点M,使得△MAB的面积等于△ABC的面积.如果存在,求出符合条件的点M的坐标;如果不存在,请说明理由.
(3)点P在抛物线上,直线PQ∥BC交x轴于点Q,连接BQ.
①若含45°角的直角三角板如图2所示放置.其中,一个顶点与点C重合,直角顶点D在BQ上,另一 个顶点E在PQ上.请求出此时点Q的坐标和直线BQ的函数解析式;

②若含30°角的直角三角板一个顶点与点C重合,直角顶点D在直线BQ上,另一个顶点E在PQ上,求点P的坐标.

  • 题型:未知
  • 难度:未知

已知抛物线轴交于点A(,0),
(1)直接写出抛物线与轴的另一个交点B的坐标;
(2)若直线过抛物线顶点M及抛物线与轴的交点(0,3).
① 求直线MC所对应的函数关系式;
② 若直线MC与轴的交点为,在抛物线上是否存在点,使得△NPC是以NC为直角边的直角三角形?若存在,求出点的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转,得到线段AB.过点B轴的垂线,垂足为E,过点C轴的垂线,交直线BE于点D.运动时间为秒.

(1)当点B与点D重合时,求的值;
(2)设△BCD的面积为S,当为何值时,?
(3)连接MB,当MBOA时,如果抛物线的顶点在△ABM内部(不包括边),求a的取值范围.

来源:2012年湖北省咸宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).
(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;
(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;
(3)当t为何值时,△MNA是一个等腰三角形?

来源:2012年初中毕业升学考试(广东湛江卷)数学
  • 题型:未知
  • 难度:未知

如图,矩形OABC中,A(6,0)、C(0,2)、D(0,3),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.

(1)①点B的坐标是  ;②∠CAO=   度;③当点Q与点A重合时,点P的坐标为   ;(直接写出答案)
(2)设OA的中心为N,PQ与线段AC相交于点M,是否存在点P,使△AMN为等腰三角形?若存在,请直接写出点P的横坐标为m;若不存在,请说明理由.
(3)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.

来源:2012年初中毕业升学考试(广东省梅州卷)数学
  • 题型:未知
  • 难度:未知

如图是一个边长6厘米的立方体ABCD---EFGH, 一只甲虫在棱EF上且距F点1厘米的P处. 它要爬到顶点D,需要爬行的最近距离是__________厘米.

  • 题型:未知
  • 难度:未知

初中数学解答题