优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解答题
初中数学

(11·漳州)(满分13分)如图,直线y=-2x+2与x轴、y轴分别交于AB两点,将△OAB绕点O逆时针方向旋转90°后得到△OCD

(1)填空:点C的坐标是(_  ▲   ▲  ),
D的坐标是(_  ▲  _  ▲  );
(2)设直线CDAB交于点M,求线段BM的长;
(3)在y轴上是否存在点P,使得△BMP是等腰三角形?若存在,
请求出所有满足条件的点P的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

(11·漳州)(满分10分)2008年漳州市出口贸易总值为22.52亿美元,至2010年出口贸易总值达到50.67亿美元,反映了两年来漳州市出口贸易的高速增长.
(1)求这两年漳州市出口贸易的年平均增长率;
(2)按这样的速度增长,请你预测2011年漳州市的出口贸易总值.
(温馨提示:2252=4×563,5067=9×563)

  • 题型:未知
  • 难度:未知

(11·漳州)(满分10分)如图,AB是⊙O的直径,,∠COD=60°.

(1)△AOC是等边三角形吗?请说明理由;
(2)求证:OCBD

  • 题型:未知
  • 难度:未知

某校"我爱学数学"课题学习小组的活动主题是"测量学校旗杆的高度".以下是该课题小组研究报告的部分记录内容:

课题
测量学校旗杆的高度
图示

发言记录
小红:我站在远处看旗杆顶端,测得仰角为30°
小亮:我从小红的位置向旗杆方向前进12 m看旗杆顶端,测得仰角为60°
小红:我和小亮的目高都是1.6 m

请你根据表格中记录的信息,计算旗杆 A G 的高度.(取1.7,结果保留两个有效数字)

  • 题型:未知
  • 难度:未知

(11·漳州)(满分8分)下图是2002年在北京举办的世界数学家大会的会标“弦图”,它既标志着中国古代的数学成就,又像一只转动着的风车,欢迎世界各地的数学家们.
请将“弦图”中的四个直角三角形通过你所学过的图形变换,在以下方格纸中设计另个两个不同的图案.画图要求:(1)每个直角三角形的顶点均在方格纸的格点上,且四个三角形到不重叠;(2)所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.

  • 题型:未知
  • 难度:未知

如图,飞机沿水平方向(AB两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M到飞行路线AB的距离MN.飞机能够测量的数据有俯角和飞行的距离(因安全因素,飞机不能飞到山顶的正上方N处才测飞行距离),请设计一个距离MN的方案,要求:
(1)指出需要测量的数据(用字母表示,并在图中标出);
(2)用测出的数据写出求距离MN的步骤.

 

  • 题型:未知
  • 难度:未知

如图,一次函数的图象与反比例函数y1=  ( x<0)的图象相交于A点,与y轴、x轴分别相交于BC两点,且C(2,0).当x<–1时,一次函数值大于反比例函数的值,当x>–1时,一次函数值小于反比例函数值.
(1)   求一次函数的解析式;
(2)   设函数y2= (x>0)的图象与y1=  (x<0)的图象关于y轴对称.在y2= (x>0)的图象上取一点PP点的横坐标大于2),过PPQx轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

 

  • 题型:未知
  • 难度:未知

某县为鼓励失地农民自主创业,在2010年对60位自主创业的失地农民自主创业的失地农民进行奖励,共计划奖励10万元.奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励;自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?

  • 题型:未知
  • 难度:未知

某校开展了以“人生观、价值观”为主题的班队活动,活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班50名学生中进行了调查(要求每位同学只选自己最认可的一项观点),并制成了如下扇形统计图.
(1)该班学生选择“和谐”观点的有        人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是    度.
(2)如果该校有1500名初三学生,利用样本估计选择“感恩”观点的初三学生约有       人.
(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查,求恰好选到“和谐”和“感恩”观点的概率(用树状图或列表法分析解答)

 

  • 题型:未知
  • 难度:未知

解不等式组,并把它的解集在数轴上表示出来.

  • 题型:未知
  • 难度:未知

(1)计算:
(2)先化简,再求值
(3)如图,平行四边形ABCD的对角线ACBD交于点OEFAC上,GHBD上,且AF=CEBH=DG
求证:AGHE

  • 题型:未知
  • 难度:未知

在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限。
(1)当∠BAO=45°时,求点P的坐标;
(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB的平分线上;
(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由。

  • 题型:未知
  • 难度:未知

已知二次函数的图象经过点P(-2,5)
(1)求b的值并写出当1<x≤3时y的取值范围;
(2)设在这个二次函数的图象上,
①当m=4时,能否作为同一个三角形三边的长?请说明理由;
②当m取不小于5的任意实数时,一定能作为同一个三角形三边的长,请说明理由。

  • 题型:未知
  • 难度:未知

如图,以点O为圆心的两个同心圆中,矩形ABCD的边BC为大圆的弦,边AD与小圆相切于点M,OM的延长线与BC相交于点N。
(1)点N是线段BC的中点吗?为什么?
(2)若圆环的宽度(两圆半径之差)为6cm,AB=5cm,BC=10cm,求小圆的半径。

  • 题型:未知
  • 难度:未知

小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为sm,图中折线OABD、线段EF分别表示s1、s2t之间的函数关系的图象。
(1)求s2t之间的函数关系式;
(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?
 

  • 题型:未知
  • 难度:未知

初中数学解答题