某小学在6月1日组织师生共110人到趵突泉公园游览,趵突泉公园规定:成人票价每位40元,学生票价每位20元.该学校购票共花费2400元,在这次游览活动中,教师和学生各有多少人?
(1)如图1,△ABC中,∠A=60°,∠B:∠C=1:5,求∠B的度数.
(2)如图2,点M为正方形ABCD对角线BD上一点,分别连接AM、CM.求证:AM=CM.
(11·天水)在梯形OABC中,CB∥OA,∠AOC=60°,∠OAB=90°,
OC=2,BC=4,以点O为原点,OA所在的直线为x轴,建立平面直角坐标系,另有一边
长为2的等边△DEF,DE在x轴上(如图(1)),如果让△DEF以每秒1个单位的速度向
左作匀速直线运动,开始时点D与点A重合,当点D到达坐标原点时运动停止.
(1)设△DEF运动时间为t,△DEF与梯形OABC重叠部分的面积为S,求S关于t的函
数关系式.
(2)探究:在△DEF运动过程中,如果射线DF交经过O、C、B三点的抛物线于点G,是
否存在这样的时刻t,使得△OAG的面积与梯形OABC的面积相等?若存在,求出t的值;
若不存在,请说明理由.
(11·天水)在△ABC中,AB=AC,点O是△ABC的外心,连接AO
并延长交BC于D,交△ABC的外接圆于E,过点B作⊙O的切线交AO的延长线于Q,设
(11·天水)某电脑公司各种品牌、型号的电脑价格如下表,育才中学
要从甲、乙两种品牌电脑中各选择一种型号的电脑.
(1)写出所有选购方案(利用树状图或列表方法表示).如果各种选购方案被选中的可能性
相同,那么A型号电脑被选中的概率是多少?
(2)该中学预计购买甲、乙两种品牌电脑共36台,其中甲品牌电脑只选了A型号,学校
规定购买费用不能高于10万元,又不低于9.2万元,问购买A型号电脑可以是多少台?
|
甲 |
乙 |
|||
型号 |
A |
B |
C |
D |
E |
单价(元/台) |
6000 |
4000 |
2500 |
5000 |
2000 |
(11·天水)某校开展的一次动漫设计大赛,杨帆同学运用了数学知识
进行了富有创意的图案设计,如图(1),他在边长为1的正方形ABCD内作等边△BCE,
并与正方形的对角线交于点F、G,制作如图(2)的图标,请我计算一下图案中阴影图形的
面积.
(11·天水)如图,在平面直角坐标系中,O为坐标原点,每个小方格的
边长为1个单位长度.正方形ABCD顶点都在格点上,其中,点A的坐标为 (1,1).
(1)若将正方形ABCD绕点A顺时针方向旋转90°,点B到达点B1,点C到达点C1,点
D到达点D1,求点B1、C1、D1的坐标.
(2)若线段AC1的长度与点D1的横坐标的差恰好是一元二次方程x2+ax+1=0的一个根,
求a的值.
(11·天水)本题共13分(其中第Ⅰ小题6分,第Ⅱ小题7分)
Ⅰ.爱养花的李先生为选择一个合适的时间去参观2011年西安世界园艺博览会,他查阅了
5月10日至16日是(星期一至星期日)每天的参观人数,得到图(1)、图(2)所示的统
计图.其中图(1)是每天参观人数的统计图,图(2)是5月15日(星期六)这一天上午、
中午、下午和晚上四个时段参观人数的扇形统计图,请你根据统计图解答下面的问题:
(1)5月10日至16日这一周中,参观人数最多的是日是_ ▲ ,有_ ▲ 万人,
参观人数最少的是日是_ ▲ ,有_ ▲ 万人,中位数是_ ▲ .
(2)5月15日是(星期六)这一天,上午的参观人数比下午的参观人数多多少人?(精确
到1万人)
(3)如果李先生想尽可能选择参观人数较少的时间参观世园会,你认为选择什么时间较合
适?
Ⅱ.如图在等腰Rt△OBA和Rt△BCD中,∠OBA=∠BCD=90°,点A和点C都在双曲线
(11·天水)已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,
DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.
Ⅱ.已知l1:直线y=-x+3和l2:直线y=2x,l1与x轴交点为A.求:
(1)l1与l2的交点坐标.
(2)经过点A且平行于l2的直线的解析式
(8分)“十年树木,百年树人”,教师的素养关系到国家的未来.我市某区招聘音乐
教师采用笔试、专业技能测试、说课三种形式进行选拔,这三项的成绩满分均为100分,并
按2:3:5的比例折合纳入总分,最后,按照成绩的排序从高到低依次录取.该区要招聘2名音
乐教师,通过笔试、专业技能测试筛选出前6名选手进入说课环节,这6名选手的各项成绩
见下表:
序号 |
1 |
2 |
3 |
4 |
5 |
6 |
笔试成绩 |
66 |
90 |
86 |
64 |
65 |
84 |
专业技能测试成绩 |
95 |
92 |
93 |
80 |
88 |
92 |
说课成绩 |
85 |
78 |
86 |
88 |
94 |
85 |
(1)笔试成绩的极差是多少?
(2)写出说课成绩的中位数、众数;
(3)已知序号为1,2,3,4号选手的成绩分别为84.2分,84.6分,88.1分,80.8分,请你判断这六位选手中序号是多少的选手将被录用?为什么?
(8分)如图,直线AB,CD分别与直线AC相交于点A,C,与
直线BD相交于点B,D.若∠1=∠2,∠3=75°,求∠4的度数.
(11·贺州).
如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于
(1)求抛物线的函数表达式;
(2)设抛物线的对称轴与轴交于点D,试在对称轴上找出点P,使△CDP为等腰三角形,
请直接写出满足条件的所有点P的坐标.
(3)若点E是线段AB上的一个动点(与A、B不重合),分别连接AC、BC,过点E作EF
∥AC交线段BC于点F,连接CE,记△CEF的面积为S,S是否存在最大值?若存在,求
出S的最大值及此时E点的坐标;若不存在,请说明理由.
(11·贺州)
如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.
锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线
交于点E.
(1)求证:AC平分∠DAB;
(2)过点O作线段AC的垂线OE,垂足为E(要求:尺规作图,保留作图痕迹,不写作
法);
试题篮
()