优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解答题
初中数学

(本小题满分7分)
解不等式组,并将它的解集在数轴上标出来.

  • 题型:未知
  • 难度:未知

(本小题满分7分,其中(1)小题3分,(2)小题4分)
解下列二元一次方程组:
(1)              
(2)

  • 题型:未知
  • 难度:未知

(11·贵港).
如图,已知直线y=-x+2与抛物线y=a (x+2) 2相交于A、B两点,点A在y轴上,M为抛物线的顶点.

(1)请直接写出点A的坐标及该抛物线的解析式;
(2)若P为线段AB上一个动点(A、B两端点除外),连接PM,设线段PM的长为l,点P的横坐标为x,请求出l2与x之间的函数关系,并直接写出自变量x的取值范围;
(3)在(2)的条件下,线段AB上是否存在点P,使以A、M、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

(11·贵港)
如图所示,在以O为圆心的两个同心圆中,小圆的半径为1,AB与小圆相切于点A,与大圆相交于点B,大圆的弦BC⊥AB于点B,过点C作大圆的切线CD交AB的延长线于点D,连接OC交小圆于点E,连接BE、BO.

(1)求证:△AOB∽△BDC;
(2)设大圆的半径为x,CD的长为y:
①求y与x之间的函数关系式;
②当BE与小圆相切时,求x的值.

  • 题型:未知
  • 难度:未知

(11·贵港)
随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭.据某市交通部门统计,2008年底该市汽车拥有量为75万辆,而截止到2010年底,该市的汽车拥有量已达108万辆.
(1)求2008年底至2010年底该市汽车拥有量的年平均增长率;
(2)为了保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2012
年底全市汽车拥有量不超过125.48万辆;另据统计,从2011年初起,该市此后每年报废的
汽车数量是上年底汽车拥有量的10%假设每年新增汽车数量相同,请你估算出该市从2011
年初起每年新增汽车数量最多不超过多少万辆.

  • 题型:未知
  • 难度:未知

如图1,在第一象限内,直线y=mx与过点B(0,1)且平行于x轴的直线l相交于点A,半径为r的⊙Q与直线y=mx、x轴分别相切于点T、E,且与直线l分别交于不同的M、N两点.

(1)当点A的坐标为(,p)时,
①填空:p=___,m= ___,∠AOE= ___.
②如图2,连接QT、QE,QE交MN于点F,当r=2时,试说明:以T、M、E、N为顶点的四边形是等腰梯形;
(2)在图1中,连接EQ并延长交⊙Q于点D,试探索:对m、r的不同取值,经过M、D、N三点的抛物线y=ax2+bx+c,a的值会变化吗?若不变,求出a的值;若变化.请说明理由.

  • 题型:未知
  • 难度:未知

(6分)解不等式组:

  • 题型:未知
  • 难度:未知

(本小题满分12分)
如图(1)在Rt△ACB中,∠C=90°AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1 cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ。若设运动的时间为t(s)(0<t<2).根据以上信息,解答下列问题:
(1)当t为何值时,以A、P、Q为顶点的三角形与△ABC相似?
(2)设四边形PQCB的面积为y(),直接写出y与t之间的函数关系式;
(3)在点P、点Q的移动过程中,如果将△APQ沿其一边所在直线翻折,翻折后的三角形与△APQ组成一个四边形,那么是否存在某一时刻t,使组成的四边形为菱形?若存在,求出t的值;若不存在,请说明理由.

图(1)                 备用图                 备用图

  • 题型:未知
  • 难度:未知

(本小题满分12分)
为把产品打入国际市场,某企业决定从下面两个投资方案中选择一个进行投资生产.方案一:生产甲产品,每件产品成本为a万美元(a为常数,且3<a<8),每件产品销售价为10万美元,每年最多可生产200件;方案二:生产乙产品,每件产品成本为8万美元,每件产品销售价为18万美元,每年最多可生产120件.另外,年销售x件乙产品时需上交万美元的特别关税.在不考虑其它因素的情况下:
(1)分别写出该企业两个投资方案的年利润与相应生产件数x(x为正整数)之间的函数关系式,并指出自变量的取值范围;
(2)分别求出这两个投资方案的最大年利润;
(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?

  • 题型:未知
  • 难度:未知

(本小题满分10分)
如图1,正方形ABCD和正方形QMNP,∠M =∠B,M是正方形ABCD的对称中心,MN交AB于F,QM交AD于E.
⑴求证:ME = MF.
⑵如图2,若将原题中的“正方形”改为“菱形”,其他条件不变,探索线段ME与线段MF的关系,并加以证明.
⑶如图3,若将原题中的“正方形”改为“矩形”,且AB = mBC,其他条件不变,探索线段ME与线段MF的关系,并说明理由.
⑷根据前面的探索和图4,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题;若不能,请说明理由.

  • 题型:未知
  • 难度:未知

(本小题满分10分)
(1)如果△ABC的面积是S,E是BC的中点,连接AE(如图1),则△AEC的面积是           
(2)在△ABC的外部作△ACD,F是AD的中点,连接CF(如图2),若四边形ABCD的面积是S,则四边形AECF的面积是            
(3)若任意四边形ABCD的面积是S,E、F分别是一组对边AB、CD的中点,连接AF,CE(如图3),则四边形AECF的面积是            

图1             图2                图3
拓展与应用
(1)若八边形ABCDEFGH的面积是100,K、M、N、O、P、Q分别是AB、BC、CD、EF、FG、GH的中点,连接KH、MG、NF、OD、PC、QB、(如图4),则图中阴影部分的面积是            
(2)四边形ABCD的面积是100,E、F分别是一组对边AB、CD上的点,且AE=AB,
CF=CD,连接AF,CE(如图5),则四边形AECF的面积是            
(3)(如图6)ABCD的面积是2,AB=a,BC=b,点E从点A出发沿AB以每秒v个单位长的速度向点B运动,点F从点B出发沿BC以每秒个单位长的速度向点C运动.E、F分别从点A、B同时出发,当其中一点到达端点时,另一点也随之停止运动.请问四边形DEBF的面积的值是否随着时间t的变化而变化?若不变,请写出这个值         ,并写出理由;若变化,说明是怎样变化的.

图4                  图5                     图6

  • 题型:未知
  • 难度:未知

(本小题满分9分)阅读对人成长的影响是很大的,某中学共1500名学生。为了了解学生课外阅读的情况,就“你最喜欢的图书类别”(只选一项)随机调查了部分学生,并将调查结果统计后绘成如下统计表和统计图(如图).请你根据统计图表提供的信息解答下列问题:

(1)这次随机调查了           名学生;
(2)把统计表和条形统计图补充完整;
(3)随机调查一名学生,估计恰好是喜欢其他类图书的概率是          
(4)此学校想为校图书馆增加书籍,请根据调查结果,为学校选择一种学生最喜欢的书籍
充实校图书馆,并说明理由;

  • 题型:未知
  • 难度:未知

(本小题满分9分)如图已知AB是的切线,切点为于点过点于点

(1)求证:
(2)若的半径为4,求CD的长;
(3)求阴影部分的面积。

  • 题型:未知
  • 难度:未知

(本小题满分8分)如图,一次函数的图象分别交x轴、y轴于A、
B两点,P为AB上一点且PC为△AOB的中位线,PC的延长线交反比例函数
的图象于Q,.

(1)求P点坐标;
(2)求Q点坐标;
(3)求出反比例函数解析式。

  • 题型:未知
  • 难度:未知

初中数学解答题