优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解答题
初中数学

已知关于 x 的方程 x 2 - 2 x + 2 k - 1 = 0 有实数根.

(1)求 k 的取值范围;

(2)设方程的两根分别是 x 1 x 2 ,且 x 2 x 1 + x 1 x 2 = x 1 · x 2 ,试求 k 的值.

来源:2019年湖北省鄂州市中考数学试卷
  • 题型:未知
  • 难度:未知

某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.

类别

A

B

C

D

E

类型

新闻

体育

动画

娱乐

戏曲

人数

11

20

40

m

4

请你根据以上信息,回答下列问题:

(1)统计表中 m 的值为   ,统计图中 n 的值为    A 类对应扇形的圆心角为   度;

(2)该校共有1500名学生,根据调查结果,估计该校最喜爱体育节目的学生人数;

(3)样本数据中最喜爱戏曲节目的有4人,其中仅有1名男生.从这4人中任选2名同学去观赏戏曲表演,请用树状图或列表求所选2名同学中有男生的概率.

来源:2019年湖北省鄂州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形中,,点是对角线的中点,过点的直线分别交边于点

(1)求证:四边形是平行四边形;

(2)当时,求的长.

来源:2019年湖北省鄂州市中考数学试卷
  • 题型:未知
  • 难度:未知

先化简,再从 - 1 、2、3、4中选一个合适的数作为 x 的值代入求值.

( x 2 - 2 x x 2 - 4 x + 4 - 4 x - 2 ) ÷ x - 4 x 2 - 4

来源:2019年湖北省鄂州市中考数学试卷
  • 题型:未知
  • 难度:未知

四边形 ABCD O 的圆内接四边形,线段 AB O 的直径,连结 AC BD .点 H 是线段 BD 上的一点,连结 AH CH ,且 ACH = CBD AD = CH BA 的延长线与 CD 的延长线相交于点 P

(1)求证:四边形 ADCH 是平行四边形;

(2)若 AC = BC PB = 5 PD AB + CD = 2 ( 5 + 1 )

①求证: ΔDHC 为等腰直角三角形;

②求 CH 的长度.

来源:2019年湖南省株洲市中考数学试卷
  • 题型:未知
  • 难度:未知

如图所示,在平面直角坐标系 Oxy 中,等腰 ΔOAB 的边 OB 与反比例函数 y = m x ( m > 0 ) 的图象相交于点 C ,其中 OB = AB ,点 A x 轴的正半轴上,点 B 的坐标为 ( 2 , 4 ) ,过点 C CH x 轴于点 H

(1)已知一次函数的图象过点 O B ,求该一次函数的表达式;

(2)若点 P 是线段 AB 上的一点,满足 OC = 3 AP ,过点 P PQ x 轴于点 Q ,连结 OP ,记 ΔOPQ 的面积为 S ΔOPQ ,设 AQ = t T = O H 2 - S ΔOPQ

①用 t 表示 T (不需要写出 t 的取值范围);

②当 T 取最小值时,求 m 的值.

来源:2019年湖南省株洲市中考数学试卷
  • 题型:未知
  • 难度:未知

如图所示,已知正方形 OEFG 的顶点 O 为正方形 ABCD 对角线 AC BD 的交点,连接 CE DG

(1)求证: ΔDOG ΔCOE

(2)若 DG BD ,正方形 ABCD 的边长为2,线段 AD 与线段 OG 相交于点 M AM = 1 2 ,求正方形 OEFG 的边长.

来源:2019年湖南省株洲市中考数学试卷
  • 题型:未知
  • 难度:未知

某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温 T 有关,现将去年六月份(按30天计算)的有关情况统计如下:

(最高气温与需求量统计表)

最高气温 T (单位: ° C )

需求量(单位:杯)

T < 25

200

25 T < 30

250

T 30

400

(1)求去年六月份最高气温不低于 30 ° C 的天数;

(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;

(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温 T 满足 25 T < 30 (单位: ° C ) ,试估计这一天销售这种鲜奶所获得的利润为多少元?

来源:2019年湖南省株洲市中考数学试卷
  • 题型:未知
  • 难度:未知

小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点 A 处测得汽车前端 F 的俯角为 α ,且 tan α = 1 3 ,若直线 AF 与地面 l 1 相交于点 B ,点 A 到地面 l 1 的垂线段 AC 的长度为1.6米,假设眼睛 A 处的水平线 l 2 与地面 l 1 平行.

(1)求 BC 的长度;

(2)假如障碍物上的点 M 正好位于线段 BC 的中点位置(障碍物的横截面为长方形,且线段 MN 为此长方形前端的边), MN l 1 ,若小强的爸爸将汽车沿直线 l 1 后退0.6米,通过汽车的前端 F 1 点恰好看见障碍物的顶部 N 点(点 D 为点 A 的对应点,点 F 1 为点 F 的对应点),求障碍物的高度.

来源:2019年湖南省株洲市中考数学试卷
  • 题型:未知
  • 难度:未知

先化简,再求值:,其中

来源:2019年湖南省株洲市中考数学试卷
  • 题型:未知
  • 难度:未知

计算:

来源:2019年湖南省株洲市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线为常数).

(1)若抛物线的顶点坐标为,求的值;

(2)若抛物线上始终存在不重合的两点关于原点对称,求的取值范围;

(3)在(1)的条件下,存在正实数,当时,恰好,求的值.

来源:2019年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.

(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写"真"或"假" )

①四条边成比例的两个凸四边形相似; (   命题)

②三个角分别相等的两个凸四边形相似; (   命题)

③两个大小不同的正方形相似. (   命题)

(2)如图1,在四边形 ABCD 和四边形 A 1 B 1 C 1 D 1 中, ABC = A 1 B 1 C 1 BCD = B 1 C 1 D 1 AB A 1 B 1 = BC B 1 C 1 = CD C 1 D 1 .求证:四边形 ABCD 与四边形 A 1 B 1 C 1 D 1 相似.

(3)如图2,四边形 ABCD 中, AB / / CD AC BD 相交于点 O ,过点 O EF / / AB 分别交 AD BC 于点 E F .记四边形 ABFE 的面积为 S 1 ,四边形 EFCD 的面积为 S 2 ,若四边形 ABFE 与四边形 EFCD 相似,求 S 2 S 1 的值.

来源:2019年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.

(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;

(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?

来源:2019年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD ,点 E F 分别在 AD CD 上,且 DE = CF AF BE 相交于点 G

(1)求证: BE = AF

(2)若 AB = 4 DE = 1 ,求 AG 的长.

来源:2019年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学解答题