如图,已知一次函数的图像与轴,轴分别交于A(1,0)、B(0,-1)两点,且又与反比例函数的图像在第一象限交于C点,C点的横坐标为2.
⑴求一次函数的解析式;
⑵求C点坐标及反比例函数的解析式.
如图,已知直线l经过点A(1,0),与双曲线y=
(x>0)交于点B(2,1).过点P(p,p-1)(p>1)作x轴的平
行线分别交双曲线y=(x>0)和y=-(x<0)于点M、N.
(1)求m的值和直线l的解析式;
(2)若点P在直线y=2上,求证:△PMB∽△PNA;
(3)是否存在实数p,使得S△AMN=4S△AMP?若存在,请求出所有满足条件的p的值;若
不存在,请说明理由.
在平面直角坐标系xOy中,已知反比例函数满足:当x<0时,y随x的增大而减小.若该反比例函数的图象与直线都经过点P,且,则实数k=___________
如图,已知反比例函数的图象经过点(,8),直线y=﹣x+b经过该反比例函数图象上的点Q(4,m).
(1)求上述反比例函数和直线的函数表达式;
(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,连接0P、OQ,求△OPQ的面积.
如图,□ABCD的顶点A,B的坐标分别是A(-1,0),B(0,-2),顶点C,D在双曲线y=上,边AD交y轴于点E,且四边形BCDE的面积是△ABE面积的5倍,则k=_____.
如图,面积为8的矩形ABOC的边OB、OC分别在轴、轴的正半
轴上,点A在双曲线的图象上,且AC=2.
(1)求值;
(2)将矩形ABOC以B旋转中心,顺时针旋转90°后得到矩形FBDE,双曲线交DE于M点,交EF于N点,求△MEN的面积.
(3)在双曲线上是否存在一点P,使得直线PN与直线BC平行?若存在,请求出P点坐标,若不存在,请说明理由.
如图,在△ABO中,已知A(0,4),B(-2,0), D为线段AB的中点.
(1)求点D的坐标;
(2)求经过点D的反比例函数解析式.
如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数(k≠0)的图象上.
(1)求a的值;
(2)直接写出点P′的坐标;
(3)求反比例函数的解析式.
(本小题8分)已知一次函数(b为常数)的图象与反比例函数(k为常数.且)的图象相交于点P(3.1).
(I) 求这两个函数的解析式;
(II) 当x>3时,试判断与的大小.井说明理由。
如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)两点,与反比例函数的图象在第一象限内的交点为M,若△OBM的面积为2.
(1)求一次函数和反比例函数的表达式;
(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.
.根据图5中①所示的程序,得到了y与x的函数图象,如图5中②,若点M是
y轴正半轴上任意一点,过点M作PQ∥x轴交图象于点P、Q,连接OP、OQ,则以下结论:
①x<0时,y=
②△OPQ的面积为定值
③x>0时,y随x的增大而增大
④MQ=2PM
⑤∠POQ可以等于90°
其中正确结论是
A.①②④ B.②④⑤ C.③④⑤ D.②③⑤
.如果反比例函数(k是常数,k≠0)的图像经过点(-1,2),那么这个函数的解析式是__________.
若A(x1,y1),B(x2,y2),C(x3,y3)是反比例函数y=图象上的点,且x1<x2
<0<x3,则y1、y2、y3的大小关系正确的是 ( )
A y3>y1>y2 B y1>y2>y3 C y2>y1>y3 D y3>y2>y1
试题篮
()