优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题
高中数学

已知数列 a n 满足 a 1 = 1 n a n + 1 = 2 n + 1 a n ,设 b n = a n n

(1)求 b 1    b 2    b 3

(2)判断数列 b n 是否为等比数列,并说明理由;

(3)求 a n 的通项公式.

来源:2018年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

ABC 的内角 A    B    C 的对边分别为 a    b    c ,已知 b sin C + c sin B = 4 a sin B sin C b 2 + c 2 - a 2 = 8 ,则△ ABC 的面积为________.

来源:2018年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

直线 y = x + 1 与圆 x 2 + y 2 + 2 y - 3 = 0 交于 A    B 两点,则 AB = ________.

来源:2018年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

x y 满足约束条件 x - 2 y - 2 0 x - y + 1 0 y 0 ,则 z = 3 x + 2 y 的最大值为_____________.

来源:2018年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

设函数 f x = 2 - x x 0 1 x > 0 ,则满足 f x + 1 < f 2 x x的取值范围是(

A.

( - , - 1 ]

B.

0 +

C.

- 1 0

D.

- 0

来源:2018年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

已知角 α 的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点 A 1 a B 2 b ,且 cos 2 α = 2 3 ,则 a - b = (  )

A.

1 5

B.

5 5

C.

2 5 5

D.

1

来源:2018年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

在长方体 ABCD - A 1 B 1 C 1 D 1 中, AB = BC = 2 A C 1 与平面 B B 1 C 1 C 所成的角为 3 0 ,则该长方体的体积为(  

A.

8

B.

6 2

C.

8 2

D.

8 3

来源:2018年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M N 的路径中,最短路径的长度为(  

A.

2 17

B.

2 5

C.

3

D.

2

来源:2018年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

已知函数 f x = 2 cos 2 x - sin 2 x + 2 ,则(  

A.

f x 的最小正周期为 π ,最大值为 3

B.

f x 的最小正周期为 π ,最大值为 4

C.

f x 的最小正周期为 2 π ,最大值为 3

D.

f x 的最小正周期为 2 π ,最大值为 4

来源:2018年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

在△ ABC 中, AD BC 边上的中线, E AD 的中点,则 EB = (  

A.

3 4 AB - 1 4 AC

B.

1 4 AB - 3 4 AC

C.

3 4 AB + 1 4 AC

D.

1 4 AB + 3 4 AC

来源:2018年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

设函数 f x = x 3 + a - 1 x 2 + ax .若 f x 为奇函数,则曲线 在点 0 0 处的切线方程为(  )

A.

y = - 2 x

B.

y = - x

C.

y = 2 x

D.

y = x

来源:2018年全国统一高考文科数学试卷(新课标Ⅰ)
  • 题型:未知
  • 难度:未知

在直角坐标系 xOy 中,曲线 C 的参数方程为 x = 2 cosθ y = 4 sinθ θ 为参数),直线 l 的参数方程为 x = 1 + tcosα y = 2 + tsinα t 为参数).

(1)求 C l 的直角坐标方程;

(2)若曲线 C 截直线 l 所得线段的中点坐标为 1 , 2 ,求 l 的斜率.

来源:2018年全国统一高考文科数学试卷(新课标Ⅱ)
  • 题型:未知
  • 难度:未知

已知函数 f x = 1 3 x 3 - a x 2 + x + 1

(1)若 a = 3 ,求 f x 的单调区间;

(2)证明: f x 只有一个零点.

来源:2018年全国统一高考文科数学试卷(新课标Ⅱ)
  • 题型:未知
  • 难度:未知

设抛物线 C    y 2 = 4 x 的焦点为 F ,过 F 且斜率为 k ( k > 0 ) 的直线 l C 交于 A B 两点, | AB | = 8

(1)求 l 的方程;

(2)求过点 A B 且与 C 的准线相切的圆的方程.

来源:2018年全国统一高考文科数学试卷(新课标Ⅱ)
  • 题型:未知
  • 难度:未知

如图,在三棱锥 P - ABC 中, AB = BC = 2 2 PA = PB = PC = AC = 4 O AC 的中点.

(1)证明: PO 平面 ABC

(2)若点 M 在棱 BC 上,且 MC = 2 MB ,求点 C 到平面 POM 的距离.

来源:2018年全国统一高考文科数学试卷(新课标Ⅱ)
  • 题型:未知
  • 难度:未知

高中数学试题