在平面直角坐标系 中, 的参数方程为 ( 为参数),过点 且倾斜角为 的直线 与 交于 两点.
(1)求 的取值范围;
(2)求 中点 的轨迹的参数方程.
如图,边长为2的正方形 所在的平面与半圆弧 所在平面垂直, 是 上异于 , 的点.
(1)证明:平面 平面 ;
(2)当三棱锥 体积最大时,求面 与面 所成二面角的正弦值.
某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数 ,并将完成生产任务所需时间超过 和不超过 的工人数填入下面的列联表:
超过 |
不超过 |
|
第一种生产方式 |
||
第二种生产方式 |
(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附: ,
已知点 和抛物线 ,过 的焦点且斜率为 的直线与 交于 , 两点.若 ,则 ________.
设 , 是双曲线 ( )的左、右焦点, 是坐标原点.过 作 的一条渐近线的垂线,垂足为 .若 ,则 的离心率为( )
A. |
|
B. |
|
C. |
|
D. |
|
某群体中的每位成员使用移动支付的概率都为 ,各成员的支付方式相互独立,设 为该群体的10位成员中使用移动支付的人数, , ,则 ( )
A. |
0.7 |
B. |
0.6 |
C. |
0.4 |
D. |
0.3 |
直线 分别与 轴, 轴交于 , 两点,点 在圆 上,则 面积的取值范围是( )
A. |
|
B. |
|
C. |
|
D. |
|
如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y 2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.
(Ⅰ)设AB中点为M,证明:PM垂直于y轴;
(Ⅱ)若P是半椭圆x 2+ =1(x<0)上的动点,求△PAB面积的取值范围.
已知等比数列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn}满足b1=1,数列{(bn+1−bn)an}的前n项和为2n2+n.
(Ⅰ)求q的值;
(Ⅱ)求数列{bn}的通项公式.
如图,已知多面体ABC-A 1B 1C 1,A 1A,B 1B,C 1C均垂直于平面ABC,∠ABC=120°,A 1A=4,C 1C=1,AB=BC=B 1B=2.
(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;
(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.
试题篮
()