已知函数.
(1)当时,求函数的单调区间;
(2)若时,函数在闭区间上的最大值为,求的取值范围.
已知为实常数,函数.
(1)讨论函数的单调性;
(2)若函数有两个不同的零点;
(Ⅰ)求实数的取值范围;
(Ⅱ)求证:且.(注:为自然对数的底数)
已知、为椭圆的左、右焦点,且点在椭圆上.
(1)求椭圆的方程;
(2)过的直线交椭圆于两点,则的内切圆的面积是否存在最大值?
若存在其最大值及此时的直线方程;若不存在,请说明理由.
数列的首项为(),前项和为,且().设,().
(1)求数列的通项公式;
(2)当时,若对任意,恒成立,求的取值范围;
(3)当时,试求三个正数,,的一组值,使得为等比数列,且,,成等差数列.
已知函数(为实常数).
(1)若函数图像上动点到定点的距离的最小值为,求实数的值;
(2)若函数在区间上是增函数,试用函数单调性的定义求实数的取值范围;
(3)设,若不等式在有解,求的取值范围.
如图,已知抛物线的焦点为F,过F的直线交抛物线于M、N两点,其准线与x轴交于K点.
(1)求证:KF平分∠MKN;
(2)O为坐标原点,直线MO、NO分别交准线于点P、Q,求的最小值.
已知函数.
(I) 当,求的最小值;
(II) 若函数在区间上为增函数,求实数的取值范围;
(III)过点恰好能作函数图象的两条切线,并且两切线的倾斜角互补,求实数的取值范围.
已知函数.
(I)求函数的单调递减区间;
(II)若在上恒成立,求实数的取值范围;
(III)过点作函数图像的切线,求切线方程
已知函数.
(1)若函数满足,且在定义域内恒成立,求实数b的取值范围;
(2)若函数在定义域上是单调函数,求实数的取值范围;
(3)当时,试比较与的大小.
已知函数,
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数在区间内的最小值为,求的值.(参考数据)
已知函数f(x)的导函数为f ′(x),且对任意x>0,都有f ′(x)>.
(Ⅰ)判断函数F(x)=在(0,+∞)上的单调性;
(Ⅱ)设x1,x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)请将(Ⅱ)中的结论推广到一般形式,并证明你所推广的结论.
在平面直角坐标系中,已知椭圆:的离心率,且椭圆C上一点到点Q的距离最大值为4,过点的直线交椭圆于点
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆上一点,且满足(O为坐标原点),当时,求实数的取值范围.
已知函数,.
(Ⅰ)若函数在上至少有一个零点,求的取值范围;
(Ⅱ)若函数在上的最大值为,求的值.
试题篮
()