某单位为了了解用电量y度与气温之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
气温(°C) |
18 |
13 |
10 |
-1 |
用电量(度) |
24 |
34 |
28 |
64 |
由表中数据得线性回归方程中,,预测当气温为时,用电量的度数约为 。
经统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系.对某小组学生每周用于数学的学习时间与数学成绩进行数据收集如下:
x |
15 |
16 |
18 |
19 |
22 |
y |
102 |
98 |
115 |
115 |
120 |
由表中样本数据求得回归方程为,则点与直线的位置关系是( )
A.点在直线左侧 B.点在直线右侧 C.点在直线上 D.无法确定
下表是降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的 生产能耗(吨标准煤)的几组对应数据,根据表中提供的数据,求出关于的线性回归方程+,那么表中的值为 ( ).
3 |
4 |
5 |
6 |
|||||
2.5 |
4 |
4.5
|
某产品的广告费用x与销售额y的统计数据如下表:
广告费用x(万元) |
4 |
2 |
3 |
5 |
销售额y(万元) |
49 |
26 |
39 |
54 |
根据上表可得回归方程为9.4,据此模型预报广告费用为6万元时销售额为( )
A、63.6万元 B、65.5万元
C、67.7万元 D、72.0万元
一位母亲记录了儿子3—9岁的身高,数据(略),由此建立的身高与年龄的回归模型为y=7.19x+73.93,用这个模型预测这个孩子10岁时的身高,则正确的叙述是
A.身高一定是145.83cm | B.身高在145.83cm以上 |
C.身高在145.83cm左右 | D.身高在145.83cm以下 |
“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路 ”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
|
男性 |
女性 |
合计 |
反感 |
10 |
|
|
不反感 |
|
8 |
|
合计 |
|
|
30 |
已知在这30人中随机抽取1人抽到反感“中国式过马路 ”的路人的概率是.
(Ⅰ)请将上面的列表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路 ”与性别是否有关?(
当<2.706时,没有充分的证据判定变量性别有关,当>2.706时,有90%的把握判定变量性别有关,当>3.841时,有95%的把握判定变量性别有关,当>6.635时,有99%的把握判定变量性别有关)
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程=0.7x+0.35,那么表中m的值为( )
A.4 | B.3.15 | C.4.5 | D.3 |
下列判断中不正确的是( )
A.为变量间的相关系数,值越大,线性相关程度越高 |
B.在平面直角坐标系中,可以用散点图发现变量之间的变化规律 |
C.线性回归方程代表了观测值、之间的关系 |
D.任何一组观测值都能得到具有代表意义的回归直线方程 |
下列函数中,随x(x>0)的增大,增长速度最快的是( )
A.y =1,x∈Z | B.y=x | C.y= | D.y= |
为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为,众数为,平均值为,则( )
A. | B. |
C. | D. |
废品率和每吨生铁成本(元)之间的回归直线方程为,这表明 ( )
A.与的相关系数为2 |
B.与的关系是函数关系的充要条件是相关系数为1 |
C.废品率每增加1%,生铁成本增加258元 |
D.废品率每增加1%,生铁成本平均每吨增加2元 |
在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。
(1)根据以上数据建立一个2×2的列联表;
(2)判断性别与休闲方式是否有关系。
附:
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
试题篮
()