顺义二中对文明班的评选设计了五个方面的多元评价指标,并通过经验公式来计算各班的综合得分,的值越高则评价效果越好.若某班在自测过程中各项指标显示出,则下阶段要把其中一个指标的值增加个单位,而使得的值增加最多,那么该指标应为 .(填入中的某个字母)
由①正方形的四个内角相等;②矩形的四个内角相等;③正方形是矩形,根据“三段论”推理得出一个结论,则作为大前提、小前提、结论的分别为( )
A.②①③ | B.③①② | C.①②③ | D.②③① |
类比平面内 “垂直于同一条直线的两条直线互相平行”的性质,可推出空间下列结论:①垂直于同一条直线的两条直线互相平行;②垂直于同一个平面的两条直线互相平行;③垂直于同一条直线的两个平面互相平行;④垂直于同一个平面的两个平面互相平行.则正确结论的序号是
正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数.以上推理( )
A.结论正确 |
B.大前提不正确 |
C.小前提不正确 |
D.全不正确 |
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
①;
②;
③;
④;
⑤.
(1)从上述五个式子中选择一个,求出常数;
(2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论.
现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为.类比到空间,有两个棱长均为的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为 .
在平面几何里,有勾股定理:“设的两边AB、AC互相垂直,则。”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积间的关系,可以得到的正确结论是:“设三棱锥A-BCD的三个侧面ABC 、ACD、ADB两两互相垂直,则 ”。
下面几种推理过程是演绎推理的是 ( )
A.两条直线平行,同旁内角互补,如果和是两条平行直线的同旁内角,则. |
B.由平面三角形的性质,推测空间四面体性质. |
C.某校高二共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人. |
D.在数列中,由此归纳出的通项公式. |
已知幂函数是增函数,而是幂函数,所以是增函数,上面推理错误是( )
A.大前提错误导致结论错 | B.小前提错误导致结论错 |
C.推理的方式错误导致错 | D.大前提与小前提都错误导致错 |
n个连续自然数按规律排成下表:
0 3 → 4 7 → 8 11 …
↓ ↑ ↓ ↑ ↓ ↑
1 → 2 5 → 6 9 → 10
根据规律,从2 009到2 011的箭头方向依次为________.
①↓→ ②→↑ ③↑→ ④→↓
有一段“三段论”推理是这样的:对于可导函数,如果,那么是函数的极值点,因为函数在处的导数值,所以,是函数的极值点.以上推理中( )
A.大前提错误 | B.小前提错误 | C.推理形式错误 | D.结论正确 |
试题篮
()