若三角形内切圆的半径为r,三边长为,则三角形的面积,根据类比思想,若四面体内切球半径为R,四个面的面积为S1、S2、S3、S4,则四面体的体积V= .
有两种花色的正六边形地面砖,按下图的规律拼成若干个图案,则第六个图案中有菱形纹的正六边形的个数是( ).
A.26 | B.31 | C.32 | D.36 |
仔细观察下面○和●的排列规律:
○●○○●○○○●○○○○●○○○○○●○○○○○○ ●……
若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是( )
A.13 | B.14 | C.15 | D.16 |
在平面几何中有如下结论:若正三角形ABC的内切圆面积为,外接圆面积为,则.推广到空间几何体中可以得到类似结论:若正四面体ABCD的内切球体积为,外接球体积为,则=___________.
古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数
,第
个三角形数为
.记第
个
边形数为
,以下列出了部分
边形数中第
个数的表达式:
三角形数
,
正方形数
,
五边形数
,
六边形数
,
…
可以推测
的表达式,由此计算
.
试题篮
()