如下图所示将若干个点摆成三角形图案,每条边(包括两个端点)有n(n>l,n∈N*)个点,相应
的图案中总的点数记为,则=( )
A. | B. | C. | D. |
如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第行有个数且两端的数均为,每个数是它下一行左右相邻两数的和,如,,,,则第7行第4个数(从左往右数)为( )
A. | B. | C. | D. |
如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,和是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点在大圆内所绘出的图形大致是( )
一个二元码是由0和1组成的数字串,其中称为第k位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0)
已知某种二元码的码元满足如下校验方程组:,其中运算⊕定义为:.现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于( )
A.4 | B.5 | C.6 | D.7 |
已知x∈R+,有不等式:x+≥2=2,x+=++≥3=3,….启发我们可能推广结论为:x+≥n+1(n∈N*),则a的值为 ( )
A.2n | B.nn | C.n2 | D.2n+1 |
设△的三边长分别为△的面积为,内切圆半径为,则.类比这个结论可知:四面体的四个面的面积分别为内切球的半径为,四面体的体积为,则=( )
A. |
B. |
C. |
D. |
设△的三边长分别为△的面积为,内切圆半径为,则.类比这个结论可知:四面体的四个面的面积分别为内切球的半径为,四面体的体积为,则=( )
A. | B. |
C. | D. |
设,,,均是实数,下面使用类比推理,得出正确结论的是( )
A.“若,则”类推出“若,则” |
B.“”类推出“” |
C.“”类推出“” |
D.“”类推出“()” |
下面几种推理过程是演绎推理的是( )
A.两条直线平行,同旁内角互补,如果和是两条平行直线的同旁内角,则+= |
B.由平面三角形的性质,推测空间四面体的性质 |
C.某校高三共有10个班,1班有51人,2班有53人,三班有52人,由此推测各班都超过50人 |
D.在数列中,,,计算,由此推测通项 |
“指数函数是增函数,是指数函数,所以是增函数”,在以上演绎推理中,下列说法正确的是( )
A.推理完全正确 | B.大前提不正确 |
C.小前提不正确 | D.推理形式不正确 |
试题篮
()