优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用
高中数学

如图所示,AD⊥平面ABC,CE⊥平面ABC,AC=AD=AB=1,,凸多面体ABCED的体积为,F为BC的中点.

(1)求证:AF∥平面BDE;
(2)求证:平面BDE⊥平面BCE.

  • 题型:未知
  • 难度:未知

如图,已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB则下列结论正确的是( )

A.PB⊥AD
B.平面PAB⊥平面PBC
C.直线BC∥平面PAE
D.直线PD与平面ABC所成的角为45°
  • 题型:未知
  • 难度:未知

已知两直线.试确定的值,使
(1)相交于点
(2)
(3),且轴上的截距为-1.

  • 题型:未知
  • 难度:未知

已知某几何体的三视图和直观图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.

(Ⅰ)求证:
(Ⅱ)求直线与平面所成角的余弦值;
(Ⅲ)设中点,在棱上是否存在一点,使平面?若存在,求的值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知


如图所示,四棱锥的底面是直角梯形, 底面,过的平面交,交不重合).

(Ⅰ)求证:
(Ⅱ)如果,求此时的值.

  • 题型:未知
  • 难度:未知

已知正四棱柱中,

(Ⅰ)求证:
(Ⅱ)求钝二面角的余弦值;
(Ⅲ)在线段上是否存在点,使得平面平面,若存在,求出的值;若不存在,
请说明理由.

  • 题型:未知
  • 难度:未知

如图所示,在直三棱柱ABC-A1B1C1中, BC="AC" ,AC1⊥A1B,M,N分别是A1B1,AB的中点,给出下列结论:①C1M⊥平面A1ABB1,②A1B⊥NB1  ,③平面AMC1⊥平面CBA1 ,其中正确结论的个数为 (  )     

A.0 B.1 C.2 D.3
  • 题型:未知
  • 难度:未知

已知四棱柱的底面为正方形,分别为棱的中点.
(1)求证:直线平面
(2)已知,取线段的中点,求二面角的余弦值.

  • 题型:未知
  • 难度:未知

已知的三边长分别为边上的点,是平面外一点.给出下列四个命题:
①若平面,且边中点,则有
②若平面,则面积的最小值为
③若平面,则三棱锥的外接球体积为
④若在平面上的射影是内切圆的圆心,则三棱锥的体积为
其中正确命题的序号是            (把你认为正确命题的序号都填上).

  • 题型:未知
  • 难度:未知

如图,在三棱锥中,平面平面为等边三角形,分别为的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面平面
(Ⅲ)求二面角的平面角的余弦值..

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面ABCD为菱形,,Q为AD的中点,.

(1)求证:平面PQB;
(2)点M在线段PC上,,试确定t的值,使平面MQB.

  • 题型:未知
  • 难度:未知

如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.

(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,,平面底面分别是的中点,求证:

(1)底面
(2)平面

  • 题型:未知
  • 难度:未知

如图,三棱柱中,平面ABC,ABBC , 点M , N分别为A1C1与A1B的中点.

(Ⅰ)求证:MN平面BCC1B1;
(Ⅱ)求证:平面A1BC平面A1ABB1

  • 题型:未知
  • 难度:未知

如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,点M在AB上,且,E为PB的中点.

(1)求证:CE∥平面ADP;
(2)求证:平面PAD⊥平面PAB;
(3)棱AP上是否存在一点N,使得平面DMN⊥平面ABCD,若存在,求出的值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题