如图,平面平面,四边形是边长为2的正方形,为上的点,且平面.
(1)求证平面;
(2)设,是否存在,使二面角的余弦值为?若存在,求的值;若不存在,说明理由.
如图,已知四棱锥的底面为菱形,,,.
(Ⅰ)求证:;
(Ⅱ)在线段AD上是否存在点Q,使得直线CQ和平面BCP所成角的正弦值为?若存在,请说明点Q位置;若不存在,请说明不存在的理由.
(本小题满分14分)在直三棱柱中,,,点分别是棱的中点.
(1)求证://平面;
(2)求证:平面平面.
如图,已知四棱锥P-ABCD,底面ABCD为边长为2的菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(Ⅰ)判定AE与PD是否垂直,并说明理由;
(Ⅱ)若PA=2,求二面角E-AF-C的余弦值.
(本小题满分12分)如图,在多面体ABCDEF中,正方形与梯形所在平面互相
垂直,已知,,.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面所成的角的正弦值.
如图,在三棱柱中,,,,在底面ABC的射影为BC的中点,D为的中点.
(1)证明:;
(2)求直线和平面所成的角的正弦值.
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为.
如图,三棱柱中,平面ABC,ABBC , 点M , N分别为A1C1与A1B的中点.
(Ⅰ)求证:MN平面BCC1B1;
(Ⅱ)求证:平面A1BC平面A1ABB1.
试题篮
()