优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用
高中数学

如图,在三棱锥中,平面分别为的中点,分别为线段上的动点,且有

(1)求证:
(2)探究:是否存在这样的动点M,使得二面角为直二面角?若存在,求CM的长度;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,

(1)证明:平面平面
(2)若,令AE与平面ABCD所成角为,且,求该四棱锥的体积.

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图1,在边长为的正方形中,,且,且分别交于点,将该正方形沿折叠,使得重合,构成图所示的三棱柱,在图中.

(Ⅰ)求证:
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)在底边上有一点,使得平面,求的值.

  • 题型:未知
  • 难度:未知

已知的三边长分别为边上的点,是平面外一点.给出下列四个命题:
①若平面,且边中点,则有
②若平面,则面积的最小值为
③若平面,则三棱锥的外接球体积为
④若在平面上的射影是内切圆的圆心,则三棱锥的体积为
其中正确命题的序号是            (把你认为正确命题的序号都填上).

  • 题型:未知
  • 难度:未知

(本小题满分13分)如图,在四棱锥中,底面是等腰梯形, 的中点.

(Ⅰ)求证:∥平面
(Ⅱ)若
(ⅰ)求证平面平面
(ⅱ)求直线与底面成角的正弦值.

  • 题型:未知
  • 难度:未知

直三棱柱中,分别为的中点.
(1)求证:
(2)求异面直线所成角的余弦值.

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面是边长为的正方形,侧面底面,且分别为的中点.

(Ⅰ)求证://平面
(Ⅱ)求证:平面平面
(Ⅲ)在线段上是否存在点使得二面角的余弦值为?若存在,求的长度;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

如图,在三棱锥中,平面平面为等边三角形,分别为的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面平面
(Ⅲ)求二面角的平面角的余弦值..

  • 题型:未知
  • 难度:未知

如图,在三棱锥底面ABC,且SB=分别是SA、SC的中点.

(Ⅰ)求证:平面平面BCD;
(Ⅱ)求二面角的平面角的大小.

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面ABCD为菱形,,Q为AD的中点,.

(1)求证:平面PQB;
(2)点M在线段PC上,,试确定t的值,使平面MQB.

  • 题型:未知
  • 难度:未知

如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.

(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,,平面底面分别是的中点,求证:

(1)底面
(2)平面

  • 题型:未知
  • 难度:未知

如图,三棱柱中,平面ABC,ABBC , 点M , N分别为A1C1与A1B的中点.

(Ⅰ)求证:MN平面BCC1B1;
(Ⅱ)求证:平面A1BC平面A1ABB1

  • 题型:未知
  • 难度:未知

棱柱的所有棱长都为2,,平面⊥平面

(1)证明:
(2)求锐二面角的平面角的余弦值;
(3)在直线上是否存在点,使得∥平面,若存在求出的位置.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,正四棱锥的底面是边长为的正方形,侧棱长是底面边长为倍,为底面对角线的交点,为侧棱上的点.

(1)求证:
(2)的中点,若平面,求证:平面

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题