如图,已知四棱锥P-ABCD,底面ABCD为边长为2的菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(Ⅰ)判定AE与PD是否垂直,并说明理由;
(Ⅱ)若PA=2,求二面角E-AF-C的余弦值.
如图,在三棱柱中,,,,在底面ABC的射影为BC的中点,D为的中点.
(1)证明:;
(2)求直线和平面所成的角的正弦值.
如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.
(Ⅰ)求证:DE∥面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求三棱锥B﹣PEC的体积.
一个几何体是由圆柱和三棱锥组合而成,点A、B、C在圆柱上底面圆O的圆周上,平面,,,其正视图、侧视图如图所示.
(1)求证:;
(2)求锐二面角的大小.
如图所示,AD⊥平面ABC,CE⊥平面ABC,AC=AD=AB=1,,凸多面体ABCED的体积为,F为BC的中点.
(1)求证:AF∥平面BDE;
(2)求证:平面BDE⊥平面BCE.
如图,已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB则下列结论正确的是( )
A.PB⊥AD |
B.平面PAB⊥平面PBC |
C.直线BC∥平面PAE |
D.直线PD与平面ABC所成的角为45° |
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为.
如图,三棱柱中,平面ABC,ABBC , 点M , N分别为A1C1与A1B的中点.
(Ⅰ)求证:MN平面BCC1B1;
(Ⅱ)求证:平面A1BC平面A1ABB1.
试题篮
()