如图在四棱锥中,底面是菱形,,平面平面,,为的中点,是棱上一点,且.
(1)求证:平面;
(2)证明:∥平面;
(3)求二面角的度数.
如图,在四棱锥P-ABCD中,四边形ABCD是矩形,侧面PAD⊥底面ABCD,若点E,F分别是PC,BD的中点。
(1)求证:EF∥平面PAD;
(2)求证:平面PAD⊥平面PCD
如图,在三棱柱中,侧面为菱形,且,,是的中点.
(1)求证:平面平面;
(2)求证:∥平面.
如图,在三棱锥中,,,为的中点,,=.
(1)求证:平面⊥平面;
(2)求直线与平面所成角的正弦值.
如图,已知四棱锥中,平面,底面是直角梯形,
且.
(1)求证:平面;
(2)求证:平面;
(3)若是的中点,求三棱锥的体积.
如图,四棱锥,底面是矩形,平面底面,,平面,且点在上.
(1)求证:;
(2)求三棱锥的体积;
(3)设点在线段上,且满足,试在线段上确定一点,使得平面.
如图,三棱柱的底面是边长为2的正三角形,且侧棱垂直于底面,侧棱长是,D是AC的中点。
(1)求证:平面;
(2)求二面角的大小;
(3)求直线与平面所成的角的正弦值.
如图,已知四棱锥,,,
平面,∥,为的中点.
(1)求证:∥平面;
(2)求证:平面平面;
(3)求四棱锥的体积.
如图, 已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)求证: EC⊥CD;
(2)求证:AG∥平面BDE;
(3)求:几何体EG-ABCD的体积.
如图,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面外一点,是AC的中点,已知,.
(1)求证:OD//平面VBC;
(2)求证:AC⊥平面VOD;
(3)求棱锥的体积.
如图,四面体ABCD中,△ABC与△DBC都是边长为4的正三角形.
(1)求证:BC⊥AD;
(2)试问该四面体的体积是否存在最大值?若存在,求出这个最大值及此时棱长AD的大小;若不存在,请说明理由.
试题篮
()