优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用 / 解答题
高中数学

如图1,矩形中,,,分别为边上的点,且,,将沿折起至位置(如图2所示),连结,其中.

(Ⅰ)求证:平面
(Ⅱ)在线段上是否存在点使得平面?若存在,求出点的位置;若不存在,请说明理由.
(Ⅲ)求点到平面的距离.

  • 题型:未知
  • 难度:未知

如图,在三棱柱中,四边形为菱形,,四边形为矩形,若.

(1)求证:
(2)求二面角的余弦值;

  • 题型:未知
  • 难度:未知

如图所示的四棱锥中,底面为菱形,平面 的中点,

求证:(I)平面; (II)平面⊥平面.

  • 题型:未知
  • 难度:未知

在四棱锥P-ABCD中,PA⊥平面ABCD,AD⊥AB,△ABC是正三角形,AC与BD的交点M恰好是AC中点,N为线段PB的中点,G在线段BM上,且

(Ⅰ)求证:AB⊥PD;
(Ⅱ)求证:GN//平面PCD.

  • 题型:未知
  • 难度:未知

如图,正三棱柱ABC-A'B'C'中,D是BC的中点,AA'=AB=2

(1)求证:ADB'D;
(2)求三棱锥A'-AB'D的体积。

  • 题型:未知
  • 难度:未知

如图,在三棱锥中,,D为AC的中点,.

(1)求证:平面平面
(2)如果三棱锥的体积为3,求.

  • 题型:未知
  • 难度:未知

如图,在三棱锥中,,D为AC的中点,.

(1)求证:平面平面
(2)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

如图,四棱锥中,底面是边长为1的正方形,平面的中点,在棱上.

(1)求证:
(2)求三棱锥的体积.

  • 题型:未知
  • 难度:未知

如图,四棱锥中,底面是直角梯形,平面分别为的中点,.

(1)求证:
(2)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图所示,矩形的对角线交于点G,AD⊥平面上的点,且BF⊥平面ACE

(1)求证:平面
(2)求三棱锥的体积.

  • 题型:未知
  • 难度:未知

如图,在三棱锥中,°,平面平面分别为中点.

(1)求证:∥平面
(2)求证:
(3)求二面角的大小.

  • 题型:未知
  • 难度:未知

(本小题满分12分)在三棱柱中,侧面为矩形,的中点,交于点侧面.

(1)证明:
(2)若,求三棱锥的体积.

  • 题型:未知
  • 难度:未知

如图,五面体中,四边形ABCD是矩形,DA面ABEF,且DA=1,AB//EF,,P、Q、M分别为AE、BD、EF的中点.

(1)求证:PQ//平面BCE;
(2)求证:AM平面ADF;
(3)求二面角A-DF-E的余弦值.

  • 题型:未知
  • 难度:未知

如图,三棱锥P—ABC中,PC⊥平面ABC,PC=AC=2,AB=BC, D是PB上一点,且CD⊥平面PAB.

(1)求证:AB⊥平面PCB;
(2)求异面直线AP与BC所成角的大小;

  • 题型:未知
  • 难度:未知

如图,五面体中,四边形ABCD是矩形,DA面ABEF,且DA=1,AB//EF,,P、Q、M分别为AE、BD、EF的中点.

求证:(I)PQ//平面BCE; 
(II)求证:AM平面ADF;

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题