如图,四棱锥中,底面为平行四边形,,,⊥底面.
(1)证明:平面平面;
(2)若二面角为,求与平面所成角的正弦值。
如图,在三棱锥S-ABC中,∠SAB=∠SAC=∠ABC=90°,SA=AB,SB=BC.
(Ⅰ)证明:平面SBC⊥平面SAB;
(Ⅱ)求二面角A-SC-B的平面角的正弦值.
把正方形以边所在直线为轴旋转到正方形,其中分别为的中点.
(1)求证:∥平面;
(2)求证:平面;
(3)求二面角的大小.
如图,四棱锥的底面是矩形,,且侧面是正三角形,平面平面,
(Ⅰ)求证:;
(Ⅱ)在棱上是否存在一点,使得二面角的大小为45°.若存在,试求的值,若不存在,请说明理由.
第(1)小题满分6分,第(2)小题满分8分.
如图:在正方体中,是的中点,是线段上一点,且.
(1) 求证:;
(2) 若平面平面,求的值.[
如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2.
(Ⅰ)求证:AE//平面DCF;
(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为.
在四棱锥中,平面,底面为矩形,.
(Ⅰ)当时,求证:;
(Ⅱ)若边上有且只有一个点,使得,求此时二面角的余弦值.
(本小题满分12分)已知某几何体的直观图和三视图如下图所示, 其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.
(Ⅰ)证明:⊥平面;
(Ⅱ)求平面与平面所成角的余弦值;
在直三棱柱中,="2" ,.点分别是 ,的中点,是棱上的动点.
(I)求证:平面;
(II)若//平面,试确定点的位置,
并给出证明;
(III)求二面角的余弦值.
【
如图,在四棱锥P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中点O为球心、BD为直径的球面交PD于点M.
⑴求证:平面ABM⊥平面PCD;
⑵求直线PC与平面ABM所成角的正切值;
⑶求点O到平面ABM的距离.
如图A1A是圆柱的母线,AB是圆柱底面圆的直径,C是底面圆周上异于A、B的任一点,AA1=AB=2
⑴求证:BC⊥平面A1AC
⑵求三棱锥A1—ABC体积的最大值
如图所示,圆柱底面的直径长度为,为底面圆心,正三角形的一个顶点在上底面的圆周上,为圆柱的母线,的延长线交于点, 的中点为.
(1) 求证:平面⊥平面;
(2) 求二面角的正切值.
试题篮
()