如图,一张平行四边形的硬纸片中,,。沿它的对角线把△折起,使点到达平面外点的位置。
(Ⅰ)△折起的过程中,判断平面与平面的位置关系,并给出证明;
(Ⅱ)当△为等腰三角形,求此时二面角的大小。
(本小题满分14分)如图,已知四面体ABCD的四个面均为锐角三角形,E、F、G、H分别为边AB、BC、CD、DA上的点,BD∥平面EFGH,且EH=FG.
(1) 求证:HG∥平面ABC;
(2) 请在面ABD内过点E作一条线段垂直于AC,并给出证明.
(本小题满分12分)如图所示,直角梯形ACDE与等腰直角△ABC所在平面互相垂直,F为BC的中点,,AE∥CD,DC=AC=2AE=2.
(Ⅰ)求证:平面BCD平面ABC
(Ⅱ)求证:AF∥平面BDE;
(Ⅲ)求四面体B-CDE的体积.
(本小题满分12分)如图所示,直角梯形ACDE与等腰直角所在平面互相垂直,F为BC的中点,,AE∥CD,.
(Ⅰ)求证:∥平面;
(Ⅱ)求二面角的余弦值.
如图,已知正三棱柱的各条棱长都为a,P为上的点。
(1)试确定的值,使得PC⊥AB;
(2)若,求二面角P—AC—B的大小;
(3)在(2)的条件下,求到平面PAC的距离。
如图,已知正三棱柱的所有棱长都为2,为棱的中点,
(1)求证:平面;
(2)求二面角的余弦值大小.
(本题10分)
如图,在正四棱柱ABCD—A1B1C1D1中,AA1=,AB=1,E是DD1的中点。
(I)求证:B1D⊥AE;
(II)求证:BD1 ||平面EAC
如图所示,已知ABCD是正方形,PD⊥平面ABCD,
PD=AD=2.
(1)求异面直线PC与BD所成的角;
(2)在线段PB上是否存在一点E,使PC⊥平面ADE?
若存在,确定E点的位置;若不存在,说明理由.
(本小题满分14分)已知如图(1),梯形中,,,,、分别是、上的动点,且,设()。沿将梯形翻折,使平面平面,如图(2)。
(Ⅰ)求证:平面平面;
(Ⅱ)若以、、、为顶点的三棱锥的体积记为,求的最大值;
(Ⅲ)当取得最大值时,求二面角的正弦值.
试题篮
()