如图所示,在棱长为2的正方体中,、分别为、的中点.
(Ⅰ)求证://平面;
(Ⅱ)求证:;
如图,已知四棱锥的正视图和侧视图均是直角三角形,俯视图为矩形,N、F分别是SC、AB的中点, ,.
(1)求证:SA⊥平面ABCD
(2)求证:NF∥平面SAD;
(3)求二面角A-BN-C的余弦值.
如图所示的长方体中,底面是边长为的正方形,为与的交点,,是线段的中点.请建立空间直角坐标系解决以下问题:
(1)求证:平面;
(2)求证:平面;
(3)求二面角的大小.
如图,在三棱锥中, 两两垂直且相等,过的中点作平面∥,且分别交于,交的延长线于.
(Ⅰ)求证:平面;
(Ⅱ)若,求二面角的余弦值.
如图所示,已知ABCD是正方形,PD⊥平面ABCD,
PD=AD=2.
(1)求异面直线PC与BD所成的角;
(2)在线段PB上是否存在一点E,使PC⊥平面ADE?
若存在,确定E点的位置;若不存在,说明理由.
(本小题满分8分)如图,矩形ABCD中,AD^平面ABE,AE=EB=BC=2,F为CE上的一点,且BF^平面ACE,AC与BD交于点G。
(1)求证:AE^平面BCE;
(2)求证:AE//平面BFD;
(3)求三棱锥C-BFG的体积。
(本小题满分13分)在四棱锥中,底面是菱形,.
(Ⅰ)若,求证:平面;
(Ⅱ)若平面平面,求证:;
(Ⅲ)在棱上是否存在点(异于点)使得∥平面,若存在,求的值;若不存在,说明理由.
如图,平面平面,是正三角形,,.
(Ⅰ)求证:;
(Ⅱ)求直线与平面所成角的正弦值.
(本小题14分)已知四棱锥P-ABCD,底面ABCD是、边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点.
(1)证明:DN//平面PMB;
(2)证明:平面PMB平面PAD;
(3)求点A到平面PMB的距离.
试题篮
()