如图甲,在直角梯形中,,,,是的中点. 现沿把平面折起,使得(如图乙所示),、分别为、边的中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面平面;
(Ⅲ)在上找一点,使得平面.
(1)证明直线和平面垂直的判定定理,即已知:如图1,且, 求证:
(2)请用直线和平面垂直的判定定理证明:如果一条直线垂直于两个平行平面中的一个,那么它也垂直于另一个平面,即
已知:如图2, 求证:
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900.
M为AB的中点
(1)求证:BC//平面PMD
(2)求证:PC⊥BC;
(3)求点A到平面PBC的距离.
(本小题满分14分)如图,在四棱锥中,四边形是正方形,平面,,且分别是的中点.
⑴求证:平面平面;
⑵求三棱锥的体积.
(本小题满分14分)如图在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD, E、F分别是PC、PD的中点,求证:(1)EF∥平面PAB;
(2)平面PAD⊥平面PDC.
(本小题满分13分)如图,在三棱柱ABC—A1B1C1中,侧面BB1C1C,已知AB=BC=1,BB1=2,,E为CC1的中点。
(1)求证:平面ABC;
(2)求二面角A—B1E—B的大小。
:如图,四棱锥P—ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.
(1)求三棱锥E-PAD的体积;
(2)点E为BC的中点时,试判断EF与平面PAC的位置
关系,并说明理由;
(3)证明:无论点E在BC边的何处,都有PE⊥AF.
:如图,在三棱锥中,底面ABC,,AP="AC," 点,分别在棱上,且BC//平面ADE
(Ⅰ)求证:DE⊥平面;
(Ⅱ)当二面角为直二面角时,求多面体ABCED与PAED的体积比。
(本小题满分12分)
如图,已知空间四边形ABCD中,BC=AC,AD=BD,E是AB的中点,
求证:
AB⊥平面CDE;
平面CDE⊥平面ABC;
若G为△ADC的重心,试在线段AB上确定一点F,使得GF∥平面CDE.
如图,三棱锥S—ABC中,AB⊥BC,D、E分别为AC、BC的中点,SA=SB=SC。
(1)求证:BC⊥平面SDE;
(2)若AB=BC=2,SB=4,求三棱锥S—ABC的体积。
试题篮
()