如图, 在直三棱柱中,,,.
(1)求证:;
(2)问:是否在线段上存在一点,使得平面?若存在,请证明;若不存在,请说明理由.
如图,在四棱锥中,为正三角形,平面,为的中点.
(1)求证:平面;
(2)求证:平面.
(本小题满分15分)如图,三棱柱中,,,.
(Ⅰ) 证明:;
(Ⅱ)若,,求二面角的余弦值.
已知四棱锥,面,∥,,,,,为上一点,是平面与的交点.
(1)求证:∥;
(2)求证:面;
(3)求与面所成角的正弦值.
如图,四棱锥P—ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB,点E是PB的中点,点F是EB的中点.
(Ⅰ) 求证:平面;
(Ⅱ) 求证:平面.
如图,在三棱锥中,底面,,,分别是的中点,在上,且.
(1)求证:平面;
(2)在线段上上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为.
如图,平面平面,四边形是边长为2的正方形,为上的点,且平面.
(1)求证平面;
(2)设,是否存在,使二面角的余弦值为?若存在,求的值;若不存在,说明理由.
(本小题满分14 分)如图1,在边长为4的菱形中,,于点,将沿折起到的位置,使,如图 2.
(1)求证:平面;
(2)求二面角的余弦值;
(3)判断在线段上是否存在一点,使平面平面?若存在,求出的值;若不存在,说明理由.
试题篮
()