如图,已知、、为不在同一直线上的三点,且,.
(1)求证:平面//平面;
(2)若平面,且,,,求证:平面;
(3)在(2)的条件下,求二面角的余弦值.
如图,在三棱锥底面ABC,且SB=分别是SA、SC的中点.
(Ⅰ)求证:平面平面BCD;
(Ⅱ)求二面角的平面角的大小.
如图,长方体中,为线段的中点,.
(Ⅰ)证明:⊥平面;
(Ⅱ)求点到平面的距离.
如图,在四棱锥中,底面是边长为的正方形,侧面底面,且,、分别为、的中点.
(Ⅰ)求证://平面;
(Ⅱ)求证:平面平面;
(Ⅲ)在线段上是否存在点使得二面角的余弦值为?若存在,求的长度;若不存在,说明理由.
如图,在三棱柱中,AC⊥BC,AB⊥,,D为AB的中点,且CD⊥。
(Ⅰ)求证:平面⊥平面ABC;
(2)求多面体的体积。
(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°。
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)设=λ(0≤A≤1),且平面AB1E与BB1E所成的锐二面角的大小为30°,试求λ的值.
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为.
如图,平面平面,四边形是边长为2的正方形,为上的点,且平面.
(1)求证平面;
(2)设,是否存在,使二面角的余弦值为?若存在,求的值;若不存在,说明理由.
(本小题满分14 分)如图1,在边长为4的菱形中,,于点,将沿折起到的位置,使,如图 2.
(1)求证:平面;
(2)求二面角的余弦值;
(3)判断在线段上是否存在一点,使平面平面?若存在,求出的值;若不存在,说明理由.
试题篮
()