优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用 / 解答题
高中数学

在四棱锥中,底面为直角梯形,的中点.

(1)求证:平面
(2)求证:.

  • 题型:未知
  • 难度:未知

如图,正三棱柱中,点的中点.

(Ⅰ)求证: 平面
(Ⅱ)求证:平面.

  • 题型:未知
  • 难度:未知

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,,平面底面中点,M是棱PC上的点,

(1)若点M是棱PC的中点,求证:平面
(2)求证:平面底面
(3)若二面角M-BQ-C为,设PM=tMC,试确定t的值.

  • 题型:未知
  • 难度:未知

如图,在三棱锥A-BCD中,平行于BC的平面MNPQ分别交AB、AC、CD、BD于M、N、P、Q四点,且MN=PQ.

(1)求证:四边形为平行四边形;
(2)试在直线AC上找一点F,使得.

  • 题型:未知
  • 难度:未知

如图已知:菱形所在平面与直角梯形ABCD所在平面互相垂直,分别是线段的中点. 

(1)求证:平面平面;
(2)试问在线段上是否存在点,使得平面,若存在,求的长并证明;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

如图,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C丄平面ABCD,且AB=BC=CA=,AD=CD=1.

求证:BD⊥AA1
若四边形是菱形,且,求四棱柱的体积.

  • 题型:未知
  • 难度:未知

如图,为圆柱的母线,是底面圆的直径,分别是的中点,

(1)证明:
(2)证明:
(3)求四棱锥与圆柱的体积比.

  • 题型:未知
  • 难度:未知

如图所示,已知为圆的直径,点为线段上一点,且,点为圆上一点,且.点在圆所在平面上的正投影为点

(1)求证:
(2)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

如图已知:菱形所在平面与直角梯形所在平面互相垂直,分别是线段的中点.

(1)求证:平面平面;
(2)点在直线上,且//平面,求平面与平面所成角的余弦值。

  • 题型:未知
  • 难度:未知

如图,在直角梯形中,,将沿折起,使平面平面,得到几何体,如图2所示.

(Ⅰ)求证:平面
(Ⅱ)求几何体的体积.

  • 题型:未知
  • 难度:未知

如图,在底面为平行四边形的四棱柱中,底面,,,
(1)求证:平面平面
(2)若,求四棱锥的体积.

  • 题型:未知
  • 难度:未知

如图,是边长为2的正方形,⊥平面,,// 且.

(Ⅰ)求证:平面⊥平面
(Ⅱ)求几何体的体积.

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面是矩形,四条侧棱长均相等.

(1)求证:平面
(2)求证:平面平面

  • 题型:未知
  • 难度:未知

如图所示,四棱锥,底面是边长为的正方形,⊥面,过点,连接
(Ⅰ)求证:
(Ⅱ)若面交侧棱于点,求多面体的体积.

  • 题型:未知
  • 难度:未知

如图,四面体中,分别是的中点,

(Ⅰ)求证:平面
(Ⅱ)求异面直线所成角余弦值的大小;
(Ⅲ)求点到平面的距离.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题