如图,四棱锥的底面是正方形,,点在棱上.
(1)求证:平面平面;
(2)当,且时,确定点的位置,即求出的值.
(3)在(2)的条件下若F是PD的靠近P的一个三等分点,求二面角A-EF-D的余弦值.
如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD⊥平面CDE,H是BE的中点,G是AE,DF的交点.
(1)求证:GH∥平面CDE;
(2)求证:面ADEF⊥面ABCD.
如图,直三棱柱中,、分别是棱、的中点,点在棱上,已知,,.
(1)求证:平面;
(2)设点在棱上,当为何值时,平面平面?
如图,在四面体中,,,点,分别是,的中点.
(1)EF∥平面ACD;
(2)求证:平面⊥平面;
(3)若平面⊥平面,且,求三棱锥的体积.
如图,在直三棱柱中,分别为、的中点,为上的点,且
(I)证明:∥平面;
(Ⅱ)若,,求三棱锥的体积.
如图,在直三棱柱中,D、E分别为、AD的中点,F为上的点,且
(I)证明:EF∥平面ABC;
(Ⅱ)若,,求二面角的大小.
直三棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中点.
(1)求证:AC⊥B1C;
(2)求证:AC1∥平面B1CD;
如图,四棱锥中,面面,底面是直角梯形,侧面是等腰直角三角形.且∥,,,.
(1)判断与的位置关系;
(2)求三棱锥的体积;
(3)若点是线段上一点,当//平面时,求的长.
如图,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.
(1)求证:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求点B到平面MAC的距离.
(如图1)在平面四边形中,为中点,,,且,现沿折起使,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.
(1)求三棱锥的体积;
(2)在线段PC上是否存在一点M,使直线与直线所成角为?若存在,求出线段的长;若不存在,请说明理由.
如图,在直三棱柱中,,点分别为和的中点.
(1)证明:平面;
(2)求和所成的角.
(如图1)在平面四边形中,为中点,,,且,现沿折起使,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.
(1)求三棱锥的体积;
(2)在线段PC上是否存在一点M,使直线与直线所成角为?若存在,求出线段的长;若不存在,请说明理由.
试题篮
()