(本小题满分12分)在正三棱锥中,、分别为棱、的中点,且.
(1)求证:直线平面;
(2)求证:平面平面.
(本小题满分14分)如图,在四棱柱中,底面是等腰梯形,,,是线段的中点.
(1)求证:平面;
(2)若平面且,求平面和平面所成的角(锐角)的余弦值.
(本题12分).如图,四棱柱中,侧棱⊥底面ABCD,AB//DC,AB⊥AD,AD=CD=1,=AB=2,E为棱的中点.
(Ⅰ)证明
(Ⅱ)求二面角的正弦值.
(Ⅲ)设点M在线段上,且直线AM与平面所成角的正弦值为,求线段AM的长.
如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB的中点,截面DAN交PC于M.
(1)求PB与平面ABCD所成角的大小;
(2)求证:PB⊥平面ADMN.
(本小题满分12分)如图,正四棱锥的底面是边长为的正方形,侧棱长是底面边长为倍,为底面对角线的交点,为侧棱上的点.
(1)求证:;
(2)为的中点,若平面,求证:平面.
已知E是矩形ABCD(如图1)边CD上的一点,现沿AE将△DAE折起至△D1AE(如图2),并且平面D1AE⊥平面ABCE,图3为四棱锥D1—ABCE的主视图与左视图.
(1)求证:直线BE⊥平面D1AE;
(2)求点A到平面D1BC的距离.
(本小题满分12分)已知E是矩形ABCD(如图1)边CD上的一点,现沿AE将△DAE折起至△D1AE(如图2),并且平面D1AE⊥平面ABCE,图3为四棱锥D1—ABCE的主视图与左视图.
(Ⅰ)求证:直线BE⊥平面D1AE;
(Ⅱ)求点A到平面D1BC的距离.
如图,四边形ABCD为梯形,AB∥CD, 平面ABCD,,
,E为BC中点。
(1)求证:平面平面PDE;
(2)线段PC上是否存在一点F,使PA//平面BDF?若存在,请找出具体位置,并进行证明;若不存在,请分析说明理由.
(本小题满分12分)已知三棱柱ABC-中,平面⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,=3,E、F分别在棱,上,且AE==2.
(Ⅰ)求证:⊥底面ABC;
(Ⅱ)在棱上找一点M,使得∥平面BEF,并给出证明.
试题篮
()