(本小题满分13分)在如图的几何体中,平面为正方形,平面为等腰梯形,∥,,,.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面所成角的正弦值.
(本小题满分12分)如下图,在组合体中,是一个长方体,是一个四棱锥.,,点且.
(1)证明:;
(2)求与平面所成的角的正切值;
(3)若,当为何值时,.
如图,已知四棱锥的底面为菱形,,,.
(Ⅰ)求证:;
(Ⅱ)在线段AD上是否存在点Q,使得直线CQ和平面BCP所成角的正弦值为?若存在,请说明点Q位置;若不存在,请说明不存在的理由.
(本小题满分14 分)如图1,在边长为4的菱形中,,于点,将沿折起到的位置,使,如图 2.
(1)求证:平面;
(2)求二面角的余弦值;
(3)判断在线段上是否存在一点,使平面平面?若存在,求出的值;若不存在,说明理由.
(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD为菱形且∠DAB=60°,O为AD中点.
(Ⅰ)若PA=PD,求证:平面POB⊥平面PAD;
(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,试问在线段PC上是否存在点M,使二面角M—BO—C的大小为60°,如存在,求的值,如不存在,说明理由.
(本小题满分14分)在直三棱柱中,,,点分别是棱的中点.
(1)求证://平面;
(2)求证:平面平面.
(本小题满分12分)直三棱柱中,,E,F分别是的中点,为棱上的点.
(Ⅰ)证明:;
(Ⅱ)已知存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为,请说明点D的位置.
如图,已知多面体中,平面⊥平面,若四边形为矩形,∥,,⊥,为中点.
(1)求证:⊥平面;
(2)求证://平面.
试题篮
()