优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用 / 解答题
高中数学

如图,四棱锥中,面EBA面ABCD,侧面ABE是等腰直角三角形,

(Ⅰ)求证:
(Ⅱ)求直线与面的所成角的正弦值.

  • 题型:未知
  • 难度:未知

(本小题满分13分)在如图的几何体中,平面为正方形,平面为等腰梯形,

(Ⅰ)求证:平面
(Ⅱ)求直线与平面所成角的正弦值.

  • 题型:未知
  • 难度:未知

如图,在正三棱柱中,分别为中点.

(1)求证:平面
(2)求证:平面平面

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在四棱锥中,平面;四边形是菱形,经过作与平行的平面交与点的两对角线交点为
求证:

  • 题型:未知
  • 难度:未知

(本小题满分15分)如图,正方形的边长为1,正方形所在平面与平面互相垂直,的中点.

(1)求证:平面
(2)求证:
(3)求三棱锥的体积.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,四棱锥中,底面四边形为直角梯形,对角线交与点底面,点为棱上一动点。

(Ⅰ)证明:
(Ⅱ)若平面,求三棱锥的体积.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如下图,在组合体中,是一个长方体,是一个四棱锥.,点

(1)证明:
(2)求与平面所成的角的正切值;
(3)若,当为何值时,

  • 题型:未知
  • 难度:未知

如图,已知四棱锥的底面为菱形,.

(Ⅰ)求证:
(Ⅱ)在线段AD上是否存在点Q,使得直线CQ和平面BCP所成角的正弦值为?若存在,请说明点Q位置;若不存在,请说明不存在的理由.

  • 题型:未知
  • 难度:未知

(本小题满分14 分)如图1,在边长为4的菱形中,于点,将沿折起到的位置,使,如图 2.
      
(1)求证:平面
(2)求二面角的余弦值;
(3)判断在线段上是否存在一点,使平面平面?若存在,求出的值;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

如图,四棱锥中,底面为菱形,⊥平面 交于点是线段中点,为线段中点.

(1)求证://平面
(2)求证:

  • 题型:未知
  • 难度:未知

(本题10分)如图所示,在直三棱柱中,分别为的中点.

(Ⅰ)求证:
(Ⅱ)求证:

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD为菱形且∠DAB=60°,O为AD中点.

(Ⅰ)若PA=PD,求证:平面POB⊥平面PAD;
(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,试问在线段PC上是否存在点M,使二面角M—BO—C的大小为60°,如存在,求的值,如不存在,说明理由.

  • 题型:未知
  • 难度:未知

(本小题满分14分)在直三棱柱中,,点分别是棱的中点.

(1)求证://平面
(2)求证:平面平面

  • 题型:未知
  • 难度:未知

(本小题满分12分)直三棱柱中,,E,F分别是的中点,为棱上的点.

(Ⅰ)证明:
(Ⅱ)已知存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为,请说明点D的位置.

  • 题型:未知
  • 难度:未知

如图,已知多面体中,平面⊥平面,若四边形为矩形,中点.

(1)求证:⊥平面
(2)求证://平面

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题