如图,在四棱锥中,平面平面,为上一点,四边形为矩形, ,,.
(Ⅰ)若,且∥平面,求的值;
(Ⅱ)求证:平面.
如图,三棱柱的侧面是边长为的正方形,侧面侧面,,,是的中点.
(Ⅰ)求证:∥平面;
(Ⅱ)求证:平面;
(Ⅲ)在线段上是否存在一点,使二面角为,若存在,求的长;若不存在,说明理由.
(本题15分)如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。
求证:(1)PA∥平面BDE
(2)平面PAC平面BDE
(本小题满分12分)如图,在四棱锥中,底面为直角梯形,且,,侧面底面. 若.
(1)求证:平面;
(2)侧棱上是否存在点,使得平面?若存在,指出点的位置并证明;若不存在,请说明理由。
(本小题满分12分)如图,在四棱锥中,底面为直角梯形,且,,侧面底面. 若.
(Ⅰ)求证:平面;
(Ⅱ)侧棱上是否存在点,使得平面?若存在,指出点的位置并证明;若不存在,请说明理由.
如图,四棱锥的底面是正方形,侧棱⊥底面,,是的中点.
(Ⅰ)证明://平面;
(Ⅱ)求二面角的平面角的余弦值;
(Ⅲ)在棱上是否存在点,使⊥平面?证明你的结论.
如图,四棱锥的底面是正方形,侧棱⊥底面,,是的中点.
(Ⅰ)证明://平面;
(Ⅱ)求二面角的平面角的余弦值;
(Ⅲ)在棱上是否存在点,使⊥平面?证明你的结论.
如图,四棱锥P—ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.
(1)求证:BE//平面PAD;
(2)若BE⊥平面PCD。
(i)求异面直线PD与BC所成角的余弦值;
(ii)求二面角E—BD—C的余弦值.
试题篮
()