已知四棱锥中,底面ABCD为的菱形,平面ABCD,点Q在直线PA上.
(Ⅰ)证明:直线QC直线BD;
(Ⅱ)若二面角的大小为,点M为BC的中点,求直线QM与AB所成角的余弦值.
(本小题满分12分)如图,在四棱锥中,底面,是直角梯形,,,,是的中点.
(1)求证;平面平面;
(2)若二面角的余弦值为,求直线与平面所成角的正弦值.
(本小题满分12分)如图1,在边长为的正方形中,,且,且,分别交于点,将该正方形沿折叠,使得与重合,构成图所示的三棱柱,在图中:
(1)求证:;
(2)在底边上有一点,使得平面,求点到平面的距离.
如图,已知四棱锥S-A BCD是由直角梯形沿着CD折叠而成,其中SD=DA=AB=BC=l,AS∥BC,A⊥AD,且二面角S-CD-A的大小为120o.
(Ⅰ)求证:平面ASD⊥平面ABCD;
(Ⅱ)设侧棱SC和底面ABCD所成角为,求的正弦值.
如图,在直三棱柱(侧棱和底面垂直的棱柱)中,平面侧面,,线段AC、A1B上分别有一点E、F且满足.
(1)求证:;
(2)求点的距离;
(3)求二面角的平面角的余弦值。
如图,三棱锥P-ABC中,E,D分别是棱BC,AC的中点,PB="PC=AB=4,AC=8," BC=,PA=.
(Ⅰ)求证:BC⊥平面PED;
(Ⅱ)求直线AC与平面PBC所成角的正弦值.
如图,在三棱锥中,△是边长为的正三角形,, ,分别为,的中点,,.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面所成角的正弦值.
如图,在正四棱台中,,,,、分别是、的中点.
(Ⅰ)求证:平面∥平面;
(Ⅱ)求证:平面.
注:底面为正方形,从顶点向底面作垂线,垂足是底面中心,这样的四棱锥叫做正四棱锥.用一个平行于正四棱锥底面的平面去截该棱锥,底面与截面之间的部分叫做正四棱台.
(本小题满分14分)
在四棱锥P-ABCD中,BC∥AD,PA⊥PD,AD=2BC,AB=PB, E为PA的中点.
(1)求证:BE∥平面PCD;
(2)求证:平面PAB⊥平面PCD.
(本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,
侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
⑴求证:PA∥平面BDE;
⑵求证:平面BDE⊥平面PBC.
(本小题满分12分)
如图,已知,分别是正方形边,的中点,与交于点,都垂直于平面,且,是中点.
(Ⅰ)求证:平面平面;
(Ⅱ)求二面角的余弦值.
试题篮
()