(本小题满分14分)已知四棱锥的底面为菱形,且,,与相交于点.
(Ⅰ)求证:底面;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)若是上的一点,且,求的值.
矩形与矩形的公共边为,且平面平面,如图所示,,.
(1)证明:平面;
(2)求异面直线与所成角的余弦值;
(3)若是棱的中点,在线段上是否存在一点,使得平面?证明你的结论.
(本小题共14分)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=.
(Ⅰ)若点M是棱PC的中点,求证:PA // 平面BMQ;
(Ⅱ)求证:平面PQB⊥平面PAD;
(Ⅲ)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值 .
如图,四棱锥S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E为棱SB上任一点.
(Ⅰ)求证:无论E点取在何处恒有;
(Ⅱ)设,当平面EDC平面SBC时,求的值;
(Ⅲ)在(Ⅱ)的条件下求二面角的大小.
(本小题满分13分)如图,三棱柱中,,,.
(1)证明:;
(2)若,,求二面角的余弦值.
如图,在三棱锥中,底面,,,分别是的中点,在上,且.
(1)求证:平面;
(2)在线段上上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.
如图四棱锥中,底面是平行四边形,平面,垂足为,在上且,,,是的中点,四面体的体积为.
(1)求过点P,C,B,G四点的球的表面积;
(2)求直线到平面所成角的正弦值;
(3)在棱上是否存在一点,使,若存在,确定点的位置,若不存在,说明理由.
(本小题满分12分)已知四棱锥,侧面底面,侧面为等边三角形,底面为菱形,且.
(1)求证:;
(2)求平面与平面所成的角(锐角)的余弦值.
(本小题满分14分)
如图6,已知点是圆心为半径为1的半圆弧上从点数起的第一个三等分点,是直径,,直线平面.
(1)证明:;
(2)在上是否存在一点,使得∥平面,若存在,请确定点的位置,并证明之;若不存在,请说明理由;
(3)求点到平面的距离.
(本小题满分13分)
如图5,已知点是圆心为半径为1的半圆弧上从点数起的第一个三等分点,是直径,,平面,点是的中点.
(1)求二面角的余弦值.
(2)求点到平面的距离.
如图,在四棱锥E—ABCD中,底面ABCD为边长为5的正方形,AE平面CDE,AE=3.
(1)若为的中点,求证:平面;
(2)求直线与平面所成角的正弦值.
试题篮
()