设二次函数满足条件:(1)当时,都有且成立;(2)当时,;(3)在上的最小值为0.
(1)求的值及的解析式;
(2)求最大的实数,使得存在,只要,就有成立.
已知函数是定义在R上的偶函数,且当时,.
(1)现已画出函数在y轴左侧的图象,如图所示,请补出完整函数的图象,并根据图象写出函数的增区间;
(2)求出函数的解析式和值域.
已知函数的图象上一点,过作平行于轴的直线,直线,求函数,和轴,及直线轴围成的面积
已知二次函数f(x)=ax2+bx+c(a>0).
(Ⅰ)(i)若b=﹣2,且f(x)在(1,+∞)上为单调递增函数,求实数a的取值范围;
(ii)若b=﹣1,c=1,当x∈[0,1]时,|f(x)|的最大值为1,求实数a的取值范围;
(Ⅱ)若f(0)≥1,f(1)≥1,f(x)=0的有两个小于1的不等正根,求a的最小正整数值.
已知二次函数+的图象通过原点,对称轴为,.是的导函数,且 .
(1)求的表达式(含有字母);
(2)若数列满足,且,求数列的通项公式;
(3)在(2)条件下,若,,是否存在自然数,使得当时恒成立?若存在,求出最小的;若不存在,说明理由.
某种商品,现在定价p元,每月卖出n件,设定价上涨x成,每月卖出数量减少y成,每月售货总金额变成现在的z倍.
(1)用x和y表示z;
(2)设x与y满足y=kx(0<k<1),利用k表示当每月售货总金额最大时x的值;
(3)若y=x,求使每月售货总金额有所增加的x值的范围.
已知函数,若存在,使,则称是函数的一个不动点.设二次函数.
(1)对任意实数,函数恒有两个相异的不动点,求的取值范围;
(2)在(1)的条件下,若的图象上两点的横坐标是的不动点,且两点关于直线对称,求的最小值.
在自然条件下,某草原上野兔第n年年初的数量记为xn,该年的增长量yn和 xn与的乘积成正比,比例系数为,其中m是与n无关的常数,且x1<m,
(1)证明:;
(2)用 xn表示xn+1;并证明草原上的野兔总数量恒小于m.
已知函数,.
(1)求的取值范围,使在闭区间上是单调函数;
(2)当时,函数的最大值是关于的函数.求;
(3)求实数的取值范围,使得对任意的,恒有成立.
试题篮
()