已知中心在原点,焦点在轴上的椭圆的离心率为,椭圆上异于长轴顶点的任意点与左右两焦点、构成的三角形中面积的最大值为.
(1)求椭圆的标准方程;
(2)已知点,连接与椭圆的另一交点记为,若与椭圆相切时、不重合,连接与椭圆的另一交点记为,求的取值范围.
已知定义在区间[0,2]上的两个函数f(x)和g(x),其中f(x)=-x2+2ax+1+a2,g(x)=x-+.
(1)求函数f(x)的最小值.
(2)对于∀x1,x2∈[0,2],f(x1)>g(x2)恒成立,求实数a的取值范围.
已知二次函数f(x)=ax2+bx+c (a≠0)且满足f(-1)=0,对任意实数x,恒有f(x)-x≥0,并且当x∈(0,2)时,f(x)≤.
(1)求f(1)的值;
(2)证明:a>0,c>0;
(3)当x∈[-1,1]时,函数g(x)=f(x)-mx (x∈R)是单调函数,求证:m≤0或m≥1.
已知当x=5时,二次函数f(x)=ax2+bx取得最小值,等差数列{an}的前n项和Sn=f(n),a2=-7.
(1)求数列{an}的通项公式;
(2)数列{bn}的前n项和为Tn,且bn=,求Tn.
某通讯公司需要在三角形地带区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域内,乙中转站建在区域内.分界线固定,且=百米,边界线始终过点,边界线满足.
设()百米,百米.
(1)试将表示成的函数,并求出函数的解析式;
(2)当取何值时?整个中转站的占地面积最小,并求出其面积的最小值.
已知关于x的一元二次函数
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为和,
求函数在区间[上是增函数的概率;
(2)设点(,)是区域内的随机点,求函数上是增函数的概率.
二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,求实数m的取值范围
已知二次函数f(x)=ax2+bx+c图象的顶点为(-1,10),且方程ax2+bx+c=0的两根的平方和为12,求二次函数f(x)的表达式.
设函数(为实常数)为奇函数,函数().
(1)求的值;
(2)求在上的最大值;
(3)当时,对所有的及恒成立,求实数的取值范围.
试题篮
()