已知二次函数。
(1)若任意x1,x2∈R,且,都有,求证:关于x的方程有两个不相等的实数根且必有一个根属于();
(2)若关于x的方程在()的根为m,且成等差数列,设函数f (x)的图象的对称轴方程为,求证:。
已知二次函数,若对任意x、x∈R,恒有2f(≤f(x)+f(x)成立,不等式f(x)<0的解集为A.
(1)求集合A;
(2)设集合,若集合B是集合A的子集,求的取值范围。
设,若a+b+c=0,f(0)f(1)>0,
(1)求证:方程f(x)=0有实根;
(2)求证:-2;
(3)设是方程f(x)=0的两个根,求的取值范围
已知b>-1,c>0,函数的图象与函数的图象相切.
(Ⅰ)设
(Ⅱ)是否存在常数c,使得函数内有极值点?若存在,求出c的取值范围;若不存在,请说明理由.
。直线l2与函数的图象以及直线l1、l2与函数的图象
围成的封闭图形如图中阴影所示,设这两个阴影区域的面积之和为
(1)求函数的解析式;
(2)若函数,判断是否存在极值,若存在,求出极值,若不存在,说明理由;
对于函数(a>0),如果方程有相异两根,.
(1)若,且的图象关于直线x=m对称.求证:;
(2)若且,求b的取值范围;
(3)、为区间,上的两个不同的点,求证:.
已知函数f(x)=ax2+bx+c,其中a∈N*,b∈N,c∈Z。
(1)若b>2a,且f(sinx)(x∈R)的最大值为2,最小值为-4,试求函数f(x)的最小值;
(2)若对任意实数x,不等式4x≤f(x)≤2(x2+1)恒成立,且存在x0,使得f(x0)<2(x02+1)成立,求c的值。
已知函数f(x)=,其中
(I)若b>2a,且 f(sinx)(x∈R)的最大值为2,最小值为-4,试求函数f(x)的最小值;
(II)若对任意实数x,不等式恒成立,且存在成立,求c的值。
二次函数f(x)=
(I)若方程f(x)=0无实数根,求证:b>0;
(II)若方程f(x)=0有两实数根,且两实根是相邻的两个整数,求证:f(-a)=;
(III)若方程f(x)=0有两个非整数实根,且这两实数根在相邻两整数之间,试证明存在整数k,使得.
学校食堂定期向精英米业以每吨1500元的价格购买大米,每次购买大米需支付运输费用100元,已知食堂每天需食用大米1吨,储存大米的费用为每吨每天2元,假设食堂每次均在用完大米的当天购买.
(Ⅰ)问食堂每隔多少天购买一次大米,能使平均每天所支付的费用最少?
(Ⅱ)若购买量大,精英米业推出价格优惠措施,一次购买量不少于20吨时可享受九五折优惠,问食堂能否接受此优惠措施?请说明理由.
试题篮
()