设数列{an}满足a1=3,an+1=an2-2nan+2,n=1,2,3,…
(1)求a2,a3,a4的值,并猜想数列{an}的通项公式(不需证明);
(2)记Sn为数列{an}的前n项和,试求使得Sn<2n成立的最小正整数n,并给出证明.
已知f(n)=1+++…+ (n∈N*),用数学归纳法证明f(2n)>时,f(2k+1)-f(2k)等于________.
用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开( )
A.(k+3)3 | B.(k+2)3 |
C.(k+1)3 | D.(k+1)3+(k+2)3 |
设是一个自然数,是的各位数字的平方和,定义数列:是自然数,(,).
(1)求,;
(2)若,求证:;
(3)求证:存在,使得.
设是一个自然数,是的各位数字的平方和,定义数列:是自然数,(,).
(1)求,;
(2)若,求证:;
(3)当时,求证:存在,使得.
已知,,.
(1)当时,试比较与的大小关系;
(2)猜想与的大小关系,并给出证明.
在数列中,已知,,(,).
(1)当,时,分别求的值,判断是否为定值,并给出证明;
(2)求出所有的正整数,使得为完全平方数.
下面四个判断中,正确的是( )
A.式子1+k+k2+…+kn(n∈N*)中,当n=1时式子值为1 |
B.式子1+k+k2+…+kn-1(n∈N*)中,当n=1时式子值为1+k |
C.式子1++…+(n∈N*)中,当n=1时式子值为1+ |
D.设f(x)=(n∈N*),则f(k+1)=f(k)+ |
(本小题满分13分)已知数列中,,.
(Ⅰ)若,设,求证数列是等比数列,并求出数列的通项公式;
(Ⅱ)若,,,证明:.
设数列{an}:1,-2,-2,3,3,3,-4,-4,-4,-4,…,(-1)k-1k,…,(-1),即当(k∈N*)时,an=(-1)k-1k,记Sn=a1+a2+…+an(n∈N*),用数学归纳法证明Si(2i+1)=-i(2i+1)(i∈N*).
试题篮
()