优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 第二数学归纳法
高中数学

在数列中,,且成等差数列,成等比数列.
(1)求
(2)根据计算结果,猜想的通项公式,并用数学归纳法证明.

  • 题型:未知
  • 难度:未知

把正整数按一定的规则排成了如图所示的三角形数表.

是位于这个三角形数表中从上往下数第行、从左往右数第个数,如.则       

  • 题型:未知
  • 难度:未知

是一个自然数,的各位数字的平方和,定义数列是自然数,).
(1)求
(2)若,求证:
(3)当时,求证:存在,使得

  • 题型:未知
  • 难度:未知

在数列{an}中,,且
(Ⅰ)求的值;
(Ⅱ)归纳的通项公式,并用数学归纳法证明.

  • 题型:未知
  • 难度:未知

已知
(1)当时,试比较的大小关系;
(2)猜想的大小关系,并给出证明.

  • 题型:未知
  • 难度:未知

(1)用数学归纳法证明等式1+2+3+…+(n+3)=
(2)用数学归纳法证明不等式

  • 题型:未知
  • 难度:未知

在数列中,已知().
(1)当时,分别求的值,判断是否为定值,并给出证明;
(2)求出所有的正整数,使得为完全平方数.

  • 题型:未知
  • 难度:未知

(本小题满分12 分)已知函数是定义在R上的不恒为零的函数,且对于任意的∈R,都满足,若=1,
(1)求的值;
(2)猜测数列通项公式,并用数学归纳法证明.

  • 题型:未知
  • 难度:未知

(本小题满分13分)已知数列中,
(Ⅰ)若,设,求证数列是等比数列,并求出数列的通项公式;
(Ⅱ)若,证明:

  • 题型:未知
  • 难度:未知

观察下列等式
                                     第一个式子
                              第二个式子
                      第三个式子
               第四个式子
照此规律下去
(Ⅰ)写出第个等式;
(Ⅱ)你能做出什么一般性的猜想?请用数学归纳法证明猜想. 

  • 题型:未知
  • 难度:未知

设函数其中的导函数.
(1)令,猜测的表达式并给予证明;
(2)若恒成立,求实数的取值范围;
(3)设,比较的大小,并说明理由.

  • 题型:未知
  • 难度:未知

利用数学归纳法证明“”,在验证成立时,等号左边是     (     )

A. B. C. D.
  • 题型:未知
  • 难度:未知

在数列中,已知,且
(1)用数学归纳法证明:
(2)求证

  • 题型:未知
  • 难度:未知

【原创】
(1)观察下列各式;根据以上各式利用归纳推理得出一个一般性的结论;
(2)设根据的大小关系证明(1)的结论;

  • 题型:未知
  • 难度:未知

设实数 c > 0 ,整数 p > 1 , n N + .
(1)证明:当 x > - 1 x 0 时, ( 1 + x ) p > 1 + p x
(2)数列 { a n } 满足 a 1 > c 1 p , a n + 1 = p - 1 p a n + c p a n 1 - p ,证明: a n > a n + 1 > c 1 p .

  • 题型:未知
  • 难度:未知

高中数学第二数学归纳法试题