平面内有n(n∈N+,n≥2)条直线,其中任何两条不平行,任何三条不过
同一点,证明:交点的个数f(n)=.
用数学归纳法证明12+32+52+…+(2n﹣1)2=n(4n2﹣1)过程中,由n=k递推到n=k+1时,不等式左边增加的项为( )
A.(2k)2 | B.(2k+3)2 | C.(2k+2)2 | D.(2k+1)2 |
已知函数
(Ⅰ)若函数在其定义域上为单调函数,求的取值范围;
(Ⅱ)若函数的图像在处的切线的斜率为0,,已知求证:
(Ⅲ)在(2)的条件下,试比较与的大小,并说明理由.
已知函数,当时,函数取得极大值.
(1)求实数的值;
(2)已知结论:若函数在区间内导数都存在,且,则存在,使得.试用这个结论证明:若,函数,则对任意,都有;
(3)已知正数,满足,求证:当,时,对任意大于,且互不相等的实数,都有.
已知为等差数列,且,公差.
(1)数列满足结论;;试证:;
(2)根据(1)中的几个等式,试归纳出更一般的结论,并用数学归纳法证明.
【原创】
(1)观察下列各式;根据以上各式利用归纳推理得出一个一般性的结论;
(2)设根据的大小关系证明(1)的结论;
试题篮
()