优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 三面角、直三面角的基本性质
高中数学

若方程仅有一个实根,那么的取值范围是         

来源:全国高中数学联合竞赛一试
  • 题型:未知
  • 难度:未知

1已知函数,且.
(1)求的解析式;
(2)为定义在上的奇函数,且满足下列性质:①对一切实数恒成立;②当.
(ⅰ)求当时,函数的解析式;
(ⅱ)求方程在区间上的解的个数.

  • 题型:未知
  • 难度:未知

(本小题满分13分)
在一条笔直的工艺流水线上有个工作台,将工艺流水线用如图所示的数轴表示,各工作台的坐标分别为,每个工作台上有若干名工人.现要在流水线上建一个零件供应站,使得各工作台上的所有工人到供应站的距离之和最短.
(Ⅰ)若,每个工作台上只有一名工人,试确定供应站的位置;
(Ⅱ)若,工作台从左到右的人数依次为,试确定供应站的位置,并求所有工人到供应站的距离之和的最小值.

来源:
  • 题型:未知
  • 难度:未知

已知函数成等差数列,点是函数图像上任意一点,点关于原点的对称点的轨迹是函数的图像。
(1)解关于的不等式
(2)当时,总有恒成立,求的取值范围。

  • 题型:未知
  • 难度:未知

某乡镇现在人均一年占有粮食360千克,如果该乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么年后若人均一年占有千克粮食,求出函数关于的解析式。

  • 题型:未知
  • 难度:未知

已知函数的定义域为R,,对任意都有,则

A.     B.     C. D.
  • 题型:未知
  • 难度:未知

已知函数f(x)=|x+1|,g(x)=2|x|+a.
(1)当a=0时,解不等式f(x)≥g(x);
(2)若任意x∈R,f(x)g(x)恒成立,求实数a的取值范围.

  • 题型:未知
  • 难度:未知

已知函数
(1)解不等式
(2)若.求证:.

  • 题型:未知
  • 难度:未知

已知函数
(1)解不等式
(2)对于任意的,不等式恒成立,求的取值范围.

  • 题型:未知
  • 难度:未知

已知,其中为常数,且,若为常数,则的值为     .

  • 题型:未知
  • 难度:未知

函数对于总有≥0 成立,则的取值集合为     

  • 题型:未知
  • 难度:未知

已知函数
(1)判断函数上的单调;
(2)若上的值域是,求的值.

  • 题型:未知
  • 难度:未知

(1)已知,求函数的最大值和最小值;
(2)要使函数上f (x)恒成立,求a的取值范围.

  • 题型:未知
  • 难度:未知

设f (x)是奇函数,且在(0,+∞)上是增函数,又f (-3)=0,则x·f (x)<0的解集为

A.{x∣-3<x<0或x>3}
B.{x∣x<-3或0<x<3}
C.{x∣x<-3或x>3}
D.{x∣-3<x<0或0<x<3}
  • 题型:未知
  • 难度:未知

若函数f (x)= 则不等式f (x)<4的解集是       

  • 题型:未知
  • 难度:未知

高中数学三面角、直三面角的基本性质试题