优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 三面角、直三面角的基本性质 / 解答题
高中数学

设函数是定义域为的奇函数.
(Ⅰ)求的值;
(Ⅱ)若,且上的最小值为,求的值.

  • 题型:未知
  • 难度:未知

已知函数
(I)求函数的最小值;
(II)对于函数定义域内的任意实数,若存在常数,使得不等式都成立,则称直线是函数的“分界线”.
设函数,试问函数是否存在“分界线”?若存在,求出“分界线”的方程.若不存在请说明理由.

  • 题型:未知
  • 难度:未知

已知函数
(I)求函数的极值;
(II)对于函数定义域内的任意实数,若存在常数,使得不等式都成立,则称直线是函数的“分界线”.
设函数,试问函数是否存在“分界线”?若存在,求出“分界线”的方程.若不存在请说明理由.

  • 题型:未知
  • 难度:未知

已知函数在一个周期内的部分对应值如下表:















(I)求的解析式;
(II)设函数,求的最大值和最小值.

  • 题型:未知
  • 难度:未知

随着机构改革工作的深入进行,各单位要减员增效。有一家公司现有职员人,(,且为偶数),每人每年可创利万元。据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年可多创利万元,但公司需支付下岗职员每人每年万元的生活费,并且该公司正常运转所需人数不得小于现有员工的,为获得最大的经济效益,该公司应裁员多少人?

  • 题型:未知
  • 难度:未知

已知函数 f(x)=ax+lnx,其中a为常数,设e为自然对数的底数.
(1)当a=-1时,求的最大值;
(2)若f(x)在区间(0,e]上的最大值为-3,求a的值;
(3)当a=-1时,试推断方程是否有实数解 .

  • 题型:未知
  • 难度:未知

 
(1)当,求的取值范围;
(2)若对任意恒成立,求实数的最小值.

  • 题型:未知
  • 难度:未知

某单位设计的两种密封玻璃窗如图所示:图1是单层玻璃,厚度为8 mm;图2是双层中空玻璃,厚度均为4 mm,中间留有厚度为的空气隔层.根据热传导知识,对于厚度为的均匀介质,两侧的温度差为,单位时间内,在单位面积上通过的热量,其中为热传导系数.假定单位时间内,在单位面积上通过每一层玻璃及空气隔层的热量相等.(注:玻璃的热传导系数为,空气的热传导系数为.)

(1)设室内,室外温度均分别为,内层玻璃外侧温度为,外层玻璃内侧温度为,且.试分别求出单层玻璃和双层中空玻璃单位时间内,在单位面积上通过的热量(结果用表示);
(2)为使双层中空玻璃单位时间内,在单位面积上通过的热量只有单层玻璃的4%,应如何设计的大小?

  • 题型:未知
  • 难度:未知

甲厂以 x 千克/小时的速度匀速生产某种产品(生产条件要求 1 x 10 ),每一小时可获得的利润是 100 ( 5 x + 1 - 3 x ) 元.
(1)求证:生产 a 千克该产品所获得的利润为 100 a 5 + 1 x - 3 x 2 元;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.

来源:2013年全国普通高等学校招生统一考试文科数学
  • 题型:未知
  • 难度:未知

设不等式 x - 2 < a ( a N * ) 的解集为A,且 3 2 A , 1 2 A .

(Ⅰ)求 a 的值

(Ⅱ)求函数 f ( x ) = x + a + x - 2 的最小值

来源:2013年全国普通高等学校招生统一考试理科数学
  • 题型:未知
  • 难度:未知

已知函数
(1)若,求的范围;   (2)不等式对任意恒成立,求实数的取值范围。

  • 题型:未知
  • 难度:未知

(1)化简
(2)已知,求的值.

  • 题型:未知
  • 难度:未知

已知函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)设,证明:对任意.

  • 题型:未知
  • 难度:未知

为了在夏季降温和冬季供暖时减少能源损耗,房屋的房顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用为C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0x10),若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。

  • 题型:未知
  • 难度:未知

已知某公司生产某品牌服装的年固定成本为10万元,每生产千件需另投入2.7万元,设该公司年内共生产该品牌服装千件并全部销售完,每千件的销售收入为万元,且
(1)写出年利润(万元)关于年产品(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?
(注:年利润=年销售收入-年总成本)

  • 题型:未知
  • 难度:未知

高中数学三面角、直三面角的基本性质解答题