(1)如图,证明命题"a是平面
内的一条直线,b是
外的一条直线(b不垂直于
),c是直线b在
上的投影,若
,则
"为真。
(2)写出上述命题的逆命题,并判断其真假(不需要证明)
(本题满分12分)给出命题方程表示焦点在轴上的椭圆;命题曲线与轴交于不同的两点.
(1)在命题中,求a的取值范围;
(2)如果命题“”为真,“”为假,求实数的取值范围.
已知命题p:方程x2+mx+1=0有负实数根;
命题q:方程4x2+4(m-2)x+1=0无实数根,
若“p或q”为真命题,“p且q”为假命题,求实数m的取值范围。
设命题p:函数是R上的减函数,命题q:函数f(x)=x2-4x+3在上的值域为[-1,3],若“p且q”为假命题,“p或q”为真命题,求的取值范围.
已知函数,
(1)求函数的定义域;
(2)求函数在区间上的最小值;
(3)已知,命题p:关于x的不等式对函数的定义域上的任意恒成立;命题q:指数函数是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.
已知命题:方程所表示的曲线为焦点在x轴上的椭圆;命题:实数满足不等式<0.
(1)若命题为真,求实数的取值范围;
(2)若命题是命题的充分不必要条件,求实数的取值范围
试题篮
()