优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 解答题
高中数学

这五个数字组成无重复数字的自然数.
(1)在组成的三位数中,求所有偶数的个数;
(2)在组成的三位数中,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为“凹数”,如等都是“凹数”,试求“凹数”的个数;
(3)在组成的五位数中,求恰有一个偶数数字夹在两个奇数数字之间的自然数的个数.

  • 题型:未知
  • 难度:未知

如图,在中,内一点,

(1)若,求
(2)若,求

  • 题型:未知
  • 难度:未知

移动公司在国庆期间推出套餐,对国庆节当日办理套餐的客户进行优惠,优惠方案如下:选择套餐一的客户可获得优惠200元,选择套餐二的客户可获得优惠500元,选择套餐三的客户可获得优惠300元,国庆节当天参与活动的人数统计结果如图所示,现将频率视为概率.

(Ⅰ)求某人获得优惠金额不低于300元的概率;
(Ⅱ)若采用分层抽样的方式从参加活动的客户中选出6人,再从该6人中随机选两人,求这两人获得相等优惠金额的概率.

  • 题型:未知
  • 难度:未知

设数列的前项和为,点均在函数的图象上.
(Ⅰ)求数列的通项公式;
(Ⅱ)若为等比数列,且,求数列的前项和

  • 题型:未知
  • 难度:未知

求经过直线的交点M,且满足下列条件的直线方程:
(1)与直线2x+3y+5=0平行;  
(2)与直线2x+3y+5=0垂直.

  • 题型:未知
  • 难度:未知

已知圆M的圆心M在x轴上,半径为1,直线:y=x-被圆M所截的弦长为,且圆心M在直线的下方.
(1)求圆M的方程;
(2)设A(0,t),B(0,t+6)(-5≤t≤-2),若圆M是△ABC的内切圆,求△ABC的面积S的最大值和最小值.

  • 题型:未知
  • 难度:未知

某市政府为了确定一个较为合理的居民用电标准,必须先了解全市居民日常用电量的分布情况.现采用抽样调查的方式,获得了n位居民在2012年的月均用电量(单位:度)数据,样本统计结果如下图表:

分 组
频 数
频 率
[0, 10)
 
0.05
[10,20)
 
0.10
[20,30)
30
 
[30,40)
 
0.25
[40,50)
 
0.15
[50,60]
15
 
合 计
n
1

 

(1)求月均用电量的中位数与平均数估计值;
(2)如果用分层抽样的方法从这n位居民中抽取8位居民,再从这8位居民中选2位居民,那么至少有1位居民月均用电量在30至40度的概率是多少?
(3)用样本估计总体,把频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用电量在30至40度的居民数X的分布列.

  • 题型:未知
  • 难度:未知

一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.
(1)求“抽取的卡片上的数字满足a+b=c”的概率;
(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.

  • 题型:未知
  • 难度:未知

已知函数f(x)=xln x,g(x)=-x2+ax-2(e为自然对数的底数,a∈R).
(1)判断曲线y=f(x)在点(1,f(1))处的切线与曲线y=g(x)的公共点个数;
(2)当时,若函数y=f(x)-g(x)有两个零点,求的取值范围.

  • 题型:未知
  • 难度:未知

选修4-5;不等式选讲
已知
(1)求的解集;
(2)若-恒成立,求的取值范围.

  • 题型:未知
  • 难度:未知

选修4-4:坐标系与参数方程选讲
已知在直角坐标系中,直线的参数方程为,(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为
(Ⅰ)求直线的普通方程和曲线的直角坐标方程;
(Ⅱ)设点是曲线上的一个动点,求它到直线的距离的取值范围.

  • 题型:未知
  • 难度:未知

已知椭圆的下顶点为P(0,-1),到焦点的距离为
(Ⅰ)设Q是椭圆上的动点,求的最大值;
(Ⅱ)若直线与圆O:x2+y2=1相切,并与椭圆交于不同的两点A、B.当,且满足时,求AOB面积S的取值范围.

  • 题型:未知
  • 难度:未知

如图,三棱柱中,平面, 点在线段上,且

(Ⅰ)求证:直线与平面不平行;
(Ⅱ)设平面与平面所成的锐二面角为,若,求的长;
(Ⅲ)在(Ⅱ)的条件下,设平面平面,求直线所成的角的余弦值.

  • 题型:未知
  • 难度:未知

已知数列的前项和为,且
(1)求的通项公式;
(2)设,若恒成立,求实数的取值范围;
(3)设,是数列的前项和,证明

  • 题型:未知
  • 难度:未知

已知函数,(为自然对数的底数).
(1)若不等式对于一切恒成立,求a的最小值;
(2)若对任意的,在上总存在两个不同的,使成立,求a的取值范围.

  • 题型:未知
  • 难度:未知

高中数学解答题