设函数,曲线通过点(0,2a+3),且在处的切线垂直于y轴.
(I)用a分别表示b和c;
(II)当bc取得最大值时,写出的解析式;
(III)在(II)的条件下,若函数g(x)为偶函数,且当时,,求当时g(x)的表达式,并求函数g(x)在R上的最小值及相应的x值.
已知函数f(x)=2ax--(2+a)lnx(a≥0)
(Ⅰ)当时,求的极值;
(Ⅱ)当a>0时,讨论的单调性;
(Ⅲ)若对任意的a∈(2,3),x1,x2∈[1,3],恒有成立,求实数m的取值范围。
定义:对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.
(1)已知二次函数,试判断是否为定义域上的“局部奇函数”?若是,求出满足的的值;若不是,请说明理由;
(2)若是定义在区间上的“局部奇函数”,求实数的取值范围;
(3)若为定义域上的“局部奇函数”,求实数的取值范围.
已知椭圆:的离心率为,右焦点为,右顶点在圆:上.
(Ⅰ)求椭圆和圆的方程;
(Ⅱ)已知过点的直线与椭圆交于另一点,与圆交于另一点.请判断是否存在斜率不为0的直线,使点恰好为线段的中点,若存在,求出直线的方程;若不存在,说明理由.
若函数满足:集合中至少存在三个不同的数构成等比数列,则称函数是等比源函数.
(Ⅰ)判断下列函数:①;②;③中,哪些是等比源函数?(不需证明)
(Ⅱ)判断函数是否为等比源函数,并证明你的结论;
(Ⅲ)证明:,函数都是等比源函数.
已知函数的自变量的取值区间为A,若其值域区间也为A,则称A为的保值区间.
(Ⅰ)求函数形如的保值区间;
(Ⅱ)函数是否存在形如的保值区间?若存在,求出实数的值,若不存在,请说明理由.
已知函数,设
(Ⅰ)求函数的单调区间
(Ⅱ)若以函数图象上任意一点为切点的切线的斜率恒成立,求实数的最小值
(Ⅲ)是否存在实数,使得函数的图象与函数的图象恰有四个不同交点?若存在,求出实数的取值范围;若不存在,说明理由。
已知椭圆的中心在原点,焦点在轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为的正方形(记为)
(Ⅰ)求椭圆的方程
(Ⅱ)设点是直线与轴的交点,过点的直线与椭圆相交于两点,当线段的中点落在正方形内(包括边界)时,求直线斜率的取值范围
给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是.
(1)若椭圆C上一动点满足,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为,求P点的坐标;
(3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点的直线的最短距离.若存在,求出a,b的值;若不存在,请说明理由.
(14分)己知函数f (x)=ex,xR
(1)求 f (x)的反函数图象上点(1,0)处的切线方程。
(2)证明:曲线y=f(x)与曲线y=有唯一公共点;
(3)设,比较与的大小,并说明理由。
已知抛物线,直线与E交于A、B两点,且,其中O为原点.
(1)求抛物线E的方程;
(2)点C坐标为,记直线CA、CB的斜率分别为,证明:为定值.
已知抛物线,直线与E交于A、B两点,且,其中O为原点.
(1)求抛物线E的方程;
(2)点C坐标为,记直线CA、CB的斜率分别为,证明:为定值.
试题篮
()