如图所示,正方形所在的平面与等腰所在的平面互相垂直,其中顶,,为线段的中点.
(1)若是线段上的中点,求证: 平面;
(2)若是线段上的一个动点,设直线与平面所成角的大小为,求的最大值.
给定函数和常数,若恒成立,则称为函数的一个“好数对”;若恒成立,则称为函数的一个“类好数对”.已知函数的定义域为.
(1)若是函数的一个“好数对”,且,求;
(2)若是函数的一个“好数对”,且当时,,求证:
函数在区间上无零点;
(3)若是函数的一个“类好数对”,,且函数单调递增,比较与的大小,并说明理由.
在中,角,,的对边分别为,,,已知,的面积为.
(1)当,,成等差数列时,求;
(2)求边上的中线的最小值.
(本小题满分12分)定义的零点为的不动点,已知函数
.
(Ⅰ)当时,求函数的不动点;
(Ⅱ)对于任意实数,函数恒有两个相异的不动点,求实数的取值范围;
(Ⅲ)若函数只有一个零点且,求实数的最小值.
某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为。
|
优秀 |
非优秀 |
合计 |
甲班 |
10 |
|
|
乙班 |
|
30 |
|
合计 |
|
|
110 |
(1)请完成上面的列联表;
(2)根据列联表的数据,是否有99.9%的把握认为“成绩与班级有关系”。
参考公式与临界值表:。
0.100 |
0.050 |
0.025 |
0.010 |
0.001 |
|
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
试题篮
()