下图是某地区2000年至2016年环境基础设施投资额 (单位:亿元)的折线图.
为了预测该地区2018年的环境基础设施投资额,建立了 与时间变量 的两个线性回归模型.根据2000年至2016年的数据(时间变量 的值依次为 )建立模型①: ;根据2010年至2016年的数据(时间变量 的值依次为 )建立模型②: .
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
记 为等差数列 的前 项和,已知 , .
(1)求 的通项公式;
(2)求 ,并求 的最小值.
在平面直角坐标系 中, 的参数方程为 ( 为参数),过点 且倾斜角为 的直线 与 交于 两点.
(1)求 的取值范围;
(2)求 中点 的轨迹的参数方程.
已知斜率为 的直线 与椭圆 交于 , 两点,线段 的中点为 .
(1)证明: ;
(2)设 为 的右焦点, 为 上一点,且 .证明: , , 成等差数列,并求该数列的公差.
如图,边长为2的正方形 所在的平面与半圆弧 所在平面垂直, 是 上异于 , 的点.
(1)证明:平面 平面 ;
(2)当三棱锥 体积最大时,求面 与面 所成二面角的正弦值.
某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数 ,并将完成生产任务所需时间超过 和不超过 的工人数填入下面的列联表:
超过 |
不超过 |
|
第一种生产方式 |
||
第二种生产方式 |
(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附: ,
已知函数 .
(Ⅰ)若f(x)在x=x 1,x 2(x 1≠x 2)处导数相等,证明:f(x 1)+f(x 2)>8−8ln2;
(Ⅱ)若a≤3−4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.
如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y 2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.
(Ⅰ)设AB中点为M,证明:PM垂直于y轴;
(Ⅱ)若P是半椭圆x 2+ =1(x<0)上的动点,求△PAB面积的取值范围.
已知等比数列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn}满足b1=1,数列{(bn+1−bn)an}的前n项和为2n2+n.
(Ⅰ)求q的值;
(Ⅱ)求数列{bn}的通项公式.
如图,已知多面体ABC-A 1B 1C 1,A 1A,B 1B,C 1C均垂直于平面ABC,∠ABC=120°,A 1A=4,C 1C=1,AB=BC=B 1B=2.
(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;
(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.
已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P( ).
(Ⅰ)求sin(α+π)的值;
(Ⅱ)若角β满足sin(α+β)= ,求cosβ的值.
试题篮
()