如图,直三棱柱ABC﹣A 1B 1C 1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA 1的长为5.
(1)求三棱柱ABC﹣A 1B 1C 1的体积;
(2)设M是BC中点,求直线A 1M与平面ABC所成角的大小.
已知一个口袋有
个白球,
个黑球
,这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,
的抽屉内,其中第k次取出的球放入编号为k的抽屉
.
(Ⅰ)试求编号为2的抽屉内放的是黑球的概率 ;
(Ⅱ)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数, 是 的数学期望,证明 .
如图,在平行六面体
中,
,且
,
,
.
(Ⅰ)求异面直线 与 所成角的余弦值;
(Ⅱ)求二面角 的正弦值.
在平面直角坐标系
中,已知直线l的参数方程为
(t为参数),曲线C的参数方程为
(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.
已知矩阵
,
.
(Ⅰ)求AB;
(Ⅱ)若曲线C 1: =1在矩阵AB对应的变换作用下得到另一曲线C 2 , 求C 2的方程.
已知函数
有极值,且导函数
的极值点是
的零点.(极值点是指函数取极值时对应的自变量的值)
(Ⅰ)求b关于a的函数关系式,并写出定义域;
(Ⅱ)证明: ;
(Ⅲ)若 , 这两个函数的所有极值之和不小于 ,求a的取值范围.
对于给定的正整数k,若数列
满足:
对任意正整数
总成立,则称数列{a n}是"
数列".
(Ⅰ)证明:等差数列 是" 数列";
(Ⅱ)若数列 既是"P(2)数列",又是" 数列",证明: 是等差数列.
如图,水平放置的正四棱柱形玻璃容器
和正四棱台形玻璃容器
的高均为
,容器
的底面对角线
的长为
cm,容器
的两底面对角线
,
的长分别为
和
.分别在容器
和容器
中注入水,水深均为
.现有一根玻璃棒
,其长度为
.(容器厚度、玻璃棒粗细均忽略不计)
(Ⅰ)将l放在容器 中, 的一端置于点 处,另一端置于侧棱 上,求 没入水中部分的长度;
(Ⅱ)将l放在容器 中, 的一端置于点 处,另一端置于侧棱 上,求 没入水中部分的长度.
如图,在平面直角坐标系
中,椭圆
的左、右焦点分别为
,
, 离心率为
,两准线之间的距离为
.点P在椭圆E上,且位于第一象限,过点
作直线
的垂线
, 过点
作直线
的垂线
.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若直线 , 的交点Q在椭圆E上,求点P的坐标.
已知向量
,
),
.
(Ⅰ)若 ,求x的值;
(Ⅱ)记 ,求 的最大值和最小值以及对应的x的值.
如图,在三棱锥
中,
,
,平面
平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且
.
求证:(Ⅰ)EF∥平面ABC;
(Ⅱ) .
[选修4-5:不等式选讲]
已知函数 .
(1)当 时,求不等式 的解集;
(2)若不等式 的解集包含 ,求 a的取值范围.
试题篮
()