优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 解答题
高中数学

如图,直三棱柱ABC﹣A 1B 1C 1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA 1的长为5.

(1)求三棱柱ABC﹣A 1B 1C 1的体积;    

(2)设M是BC中点,求直线A 1M与平面ABC所成角的大小.

来源:2017年全国统一高考数学试卷(上海卷)
  • 题型:未知
  • 难度:未知

已知一个口袋有 m 个白球, n 个黑球 m n N *    n 2 ,这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…, m + n 的抽屉内,其中第k次取出的球放入编号为k的抽屉 k = 1 2 3 m + n

image.png

(Ⅰ)试求编号为2的抽屉内放的是黑球的概率 p

(Ⅱ)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数, E X X 的数学期望,证明 E X )< n ( m + n ) ( n - 1 )

来源:2017年全国统一高考数学试卷(江苏卷)
  • 题型:未知
  • 难度:未知

如图,在平行六面体 ABCD A 1 B 1 C 1 D 1 中, A A 1 平面 ABCD ,且 AB = AD = 2 A A 1 = 3 BAD = 120 °

(Ⅰ)求异面直线 A 1 B A C 1 所成角的余弦值;

(Ⅱ)求二面角 B A 1 D A 的正弦值.

image.png

来源:2017年全国统一高考数学试卷(江苏卷)
  • 题型:未知
  • 难度:未知

已知a,b,c,d为实数,且 a 2 + b 2 = 4 c 2 + d 2 = 16 ,证明 ac + bd 8

来源:2017年全国统一高考数学试卷(江苏卷)
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,已知直线l的参数方程为 x = - 8 + t y = t 2 (t为参数),曲线C的参数方程为 x = 2 s 2 y = 2 2 s (s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.

来源:2017年全国统一高考数学试卷(江苏卷)
  • 题型:未知
  • 难度:未知

已知矩阵 A = [ 0 1 1 0 ] B = [ 1 0 0 2 ]

(Ⅰ)求AB;

(Ⅱ)若曲线C 1 x 2 8 + y 2 2 =1在矩阵AB对应的变换作用下得到另一曲线C 2 , 求C 2的方程.

来源:2017年全国统一高考数学试卷(江苏卷)
  • 题型:未知
  • 难度:未知

如图, A B 为半圆 O 的直径,直线 P C 切半圆 O 于点 C AP PC P 为垂足.

求证:(Ⅰ) PAC = CAB

(Ⅱ) AC 2 = AP AB

image.png

来源:2017年全国统一高考数学试卷(江苏卷)
  • 题型:未知
  • 难度:未知

已知函数 f x = x 3 + a x 2 + bx + 1 a 0 b R 有极值,且导函数 f ' x 的极值点是 f x 的零点.(极值点是指函数取极值时对应的自变量的值)

(Ⅰ)求b关于a的函数关系式,并写出定义域;

(Ⅱ)证明: b 2 3 a

(Ⅲ)若 f x f ' x 这两个函数的所有极值之和不小于 7 2 ,求a的取值范围.

来源:2017年全国统一高考数学试卷(江苏卷)
  • 题型:未知
  • 难度:未知

对于给定的正整数k,若数列 { a n } 满足: a n - k + a n - k + 1 + + a n - 1 + a n + 1 + a n + k - 1 + a n + k = 2 k a n 对任意正整数 n n k 总成立,则称数列{a n}是" P k 数列".

(Ⅰ)证明:等差数列 { a n } 是" P 3 数列";

(Ⅱ)若数列 { a n } 既是"P(2)数列",又是" P 3 数列",证明: { a n } 是等差数列.

来源:2017年全国统一高考数学试卷(江苏卷)
  • 题型:未知
  • 难度:未知

如图,水平放置的正四棱柱形玻璃容器 和正四棱台形玻璃容器 的高均为 32 c m ,容器 的底面对角线 A C 的长为 10 7 cm,容器 的两底面对角线 E G E   1 G   1 的长分别为 14 c m 62 c m .分别在容器 和容器 中注入水,水深均为 12 c m .现有一根玻璃棒 l ,其长度为 40 c m .(容器厚度、玻璃棒粗细均忽略不计)

(Ⅰ)将l放在容器 中, l 的一端置于点 A 处,另一端置于侧棱 C C   1 上,求 l 没入水中部分的长度;

(Ⅱ)将l放在容器 中, l 的一端置于点 E 处,另一端置于侧棱 G G   1 上,求 l 没入水中部分的长度.

image.png

来源:2017年全国统一高考数学试卷(江苏卷)
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 x O y 中,椭圆 E x 2 a 2 + y 2 b 2 = 1 a b 0 的左、右焦点分别为 F   1 F   2 , 离心率为 1 2 ,两准线之间的距离为 8 .点P在椭圆E上,且位于第一象限,过点 F   1 作直线 P F   1 的垂线 l   1 , 过点 F   2 作直线 P F   2 的垂线 l   2

(Ⅰ)求椭圆E的标准方程;

(Ⅱ)若直线 l   1 l   2 的交点Q在椭圆E上,求点P的坐标.

image.png

来源:2017年全国统一高考数学试卷(江苏卷)
  • 题型:未知
  • 难度:未知

已知向量 a = cosx sinx b = 3 ,﹣ 3 ), x [ 0 π ]

(Ⅰ)若 a b ,求x的值;

(Ⅱ)记 f x = a b ,求 f x 的最大值和最小值以及对应的x的值.

来源:2017年全国统一高考数学试卷(江苏卷)
  • 题型:未知
  • 难度:未知

如图,在三棱锥 A BCD 中, AB AD BC BD ,平面 ABD 平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且 EF AD

求证:(Ⅰ)EF∥平面ABC;

(Ⅱ) AD AC

image.png

来源:2017年全国统一高考数学试卷(江苏卷)
  • 题型:未知
  • 难度:未知

[选修4-5:不等式选讲]

已知函数 f x = x 2 + ax + 4 g ( x ) = │x + 1 + │x– 1 .

(1)当 a = 1 时,求不等式 f x g x 的解集;

(2)若不等式 f x g x 的解集包含 [ 1 1 ] ,求 a的取值范围.

来源:2017年全国统一高考理科数学试卷(全国Ⅰ卷)
  • 题型:未知
  • 难度:未知

[选修4―4:坐标系与参数方程]

在直角坐标系 xOy 中,曲线 C的参数方程为 x = 3 cos θ , y = sin θ , θ为参数),直线 l的参数方程为

x = a + 4 t , y = 1 - t , t 为参数) .

(1)若 a = - 1 ,求 Cl的交点坐标;

(2)若 C上的点到 l的距离的最大值为 17 ,求a.

来源:2017年全国统一高考理科数学试卷(全国Ⅰ卷)
  • 题型:未知
  • 难度:未知

高中数学解答题