某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数 (个) |
2 |
3 |
4 |
5 |
加工的时间 (小时) |
2.5 |
3 |
4 |
4.5 |
(1)求出关于的线性回归方程,并在坐标系中画出回归直线;
(2)试预测加工个零件需要多少小时?
(注:,,,)
如图所示的茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为( )
A.2,5 | B.5,5 | C.5,8 | D.8,8 |
设函数,其中为正实数.
(Ⅰ)若是函数的极值点,讨论函数的单调性;
(Ⅱ)若在上无最小值,且在上是单调增函数,求的取值范围,并由此判断曲线与曲线在交点个数.
袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的.用表示取球终止时所需要的取球次数.
(1)求袋中原有白球的个数;
(2)求随机变量的概率分布;
(3)求甲取到白球的概率.
已知.
(1)求的单调区间;
(2)令,则时有两个不同的根,求的取值范围;
(3)存在,且,使成立,求的取值范围.
正的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,现将沿CD翻折成直二面角A-DC-B.
(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求二面角E-DF-C的余弦值;
(3)在线段BC上是否存在一点P,使?若存在,请指出P点的位置,若存在,请说明理由.
试题篮
()